

# V910 V3

Bipolar electronic expansion valve driver

03/2017





The information given in this document contains general descriptions and/or technical characteristics concerning the performance of the products contained. This document is not intended to replace and must not be used to determine the suitability and reliability of these products for any users' specific applications. Each user or integrator is responsible for performing the risk analysis, evaluation and appropriate and complete testing of the products according to the specific application or use in question. Neither Eliwell Controls nor any of its sister companies or subsidiaries shall be legally or economically liable for any incorrect use of the information contained in this documentation. If you have any suggestions for improvement or modification, or find any errors in this publication, please contact us.

This document may not be reproduced wholly or partly in any form or using any electronic or mechanical means, including photocopies, without the express written authorisation of Eliwell.

The installation and use of this product must comply with all applicable state, regional and local safety regulations. For safety reasons and to ensure greater compliance with the data of the documented system, component repairs must be performed exclusively by the manufacturer.

When using devices for applications with technical safety requirements, comply with the relevant instructions.

Failure to use Eliwell Controls software or other software approved by Eliwell Controls with our hardware products can result in injury, damage or incorrect operating results.

Failure to comply with this information can result in injury or damage to the equipment.

© 2017 Eliwell Controls. All rights reserved

## **CONTENTS**



| 1 - INTRODUCTION                                                |    |
|-----------------------------------------------------------------|----|
| 1.1 - General description                                       | 11 |
| 1.2 - Key functions                                             | 11 |
| 2 - VERSIONS AND ACCESSORIES                                    |    |
| 2.2 - Terminal                                                  | 12 |
| 2.3 - Accessories                                               | 12 |
| 2.4 - List of compatible valves                                 | 13 |
| 3 - MECHANICAL ASSEMBLY                                         |    |
| 3.1 - Before starting                                           | 14 |
| 3.2 - Disconnection from the power supply                       | 14 |
| 3.3 - Operating instructions                                    | 15 |
| 3.4 - Comments concerning installation                          | 15 |
| 3.5 - Installation of general valve                             | 16 |
| 3.6 - Installation of V910 V3                                   | 17 |
| 3.6.1 - Access to DIP switches/SKP 10                           | 18 |
| 3.8 - Mechanical assembly                                       | 19 |
| 4 - ELECTRICAL CONNECTIONS                                      |    |
| 4.1 - Best practices for wiring                                 | 20 |
| 4.1.1 - Wiring guidelines                                       | 20 |
| 4.1.2 - Rules for screw-type terminal board                     | 21 |
| 4.1.3 - Protecting the outputs from damage from inductive loads | 22 |
| 4.1.4 - Specific considerations for handling                    | 24 |
| 4.1.5 - Analogue inputs-probes                                  | 25 |
| 4.1.6 - Serial connections                                      | 25 |
| 4.2 - Wiring diagrams                                           | 26 |
| 4.2.1 - V910 V3 electric diagrams                               | 26 |
| 4.3 - V910 V3 - Connection SKP 10                               | 28 |
| 4.4 - Connection of compatible valves                           | 29 |

## 5 - TECHNICAL DATA 5.5 - Mechanical data .......34 6 - USER INTERFACE 6.5 - STATES Menu......40 6.5.2 - Input/output display.......42 6.6 - PROGRAMMING Menu.......44 6.7 - MFK 100 (PAr/FnC folder)......46 6.8 - Setting a password (Par/PASS folder)......46 7 - I/O PHYSICAL CONFIGURATION 8 - FUNCTIONING 8.3 - Type of system dE21......54 8.4 - MOP (Maximum Operating Pressure)......54 8.6 - CO2 Pressure regulation......55

### 9 - APPLICATIONS

|    | 9.1 - "Stand-alone"                                                            | 57    |
|----|--------------------------------------------------------------------------------|-------|
|    | 9.1.1 - Control from digital inputs or serial port                             | 57    |
|    | Regulation of digital inputs                                                   | 58    |
|    | PID regulator                                                                  | 59    |
|    | 9.1.3 - EWCM EO                                                                | 60    |
|    | 9.1.4 - Regulation via serial                                                  | 63    |
|    | 9.2 - Back pressure                                                            | 66    |
|    | 9.3 - Hot gas by-pass                                                          | 68    |
|    | 9.4 - Protection of high condensation temperature                              | 70    |
|    | 9.4.1 - Pressure protection                                                    | 70    |
|    | 9.4.2 - Temperature protection                                                 | 72    |
|    | 9.5 - AHU Post-heating                                                         | 74    |
|    | 9.6 - Remote control of capacity                                               | 76    |
|    | 9.7 Liquid refrigerator                                                        | 78    |
|    | 9.8 - Refrigerated counter with ON/OFF regulation                              | 80    |
|    | 9.9 - Liquid injection regulator with auxiliary thermostat in temperature      | 81    |
| 10 | - PARAMETERS (PAr)                                                             |       |
|    | 10.1 - Levels of visibility                                                    | 83    |
|    | 10.2 - Parameters / visibility table, folder visibility table and client table | 84    |
|    | 10.2.1 - Parameters / visibility table                                         | 86    |
|    | 10.2.2 - Valve configuration parameters                                        | 92    |
|    | 10.2.3 - Valve configuration parameter table dE01dE09, dE80 with dE00 = 0      | 93    |
|    | 10.2.4 - Valve configuration parameter table dE01dE09, dE80 with dE00 ≠ 0      | 95    |
|    | 10.2.5 - Folder visibility table                                               | 101   |
|    | 10.2.6 - Client Table                                                          | 102   |
| 11 | - ALARMS                                                                       |       |
|    | 11.1 - Alarm table                                                             | . 104 |
| 12 | - MFK 100 (FnC FOLDER)                                                         |       |
|    | 12.1 - Introduction                                                            | . 105 |
|    | 12.2 - Upload/Download via DIP switch                                          | . 106 |
|    | 12.2.1 - LED DIP switches                                                      | 106   |
|    | 12.3 - Upload/Download via SKP 10                                              | . 107 |
|    | 12.3.1 - Download from MFK 100                                                 | 108   |

### 13 - SUPERVISION

| 13.1 - Configuration with Modbus RTU                | 110 |
|-----------------------------------------------------|-----|
| 13.2 - Data format (RTU)                            | 110 |
| 13.3 - Configuration of device address              | 112 |
| 13.4 - Configuration of parameter addresses         | 112 |
| 13.5 - Configuration of variable addresses / states | 112 |

6

### **INFORMATION ABOUT...**



## **Document objective**

This document describes the drivers and accessories for the **V910 V3 electronic expansion valves**, found in the information on installation and cabling.

## Note regarding validity

This document is valid for **Device Manager**.

### **Related documents**

| Document title                             | Reference number |
|--------------------------------------------|------------------|
| Driver for EEV V910 V3 - Instructions card | 9IS64552 (6L)    |

You can download these technical publications and other technical information from our website at:

www.eliwell.com

#### **SAFETY INFORMATION**

### Important information

Read these instructions carefully and visually inspect the equipment to familiarise yourself with the device before attempting to install it, put it into operation or service it. The following warning messages may appear anywhere in this documentation or on the equipment to warn of potential dangers or to call your attention to information that can clarify or simplify a procedure.



The addition of this symbol to a danger warning label indicates the electrical danger that could result in persona injury should the user fail to follow the instructions.



This is the safety warning signal. It is used to warn the user of potential dangers of personal injury. Observe all the safety warnings that follow this symbol to avoid the risk of serous injury or death.

### **A** DANGER

DANGER indicates a dangerous situation which, if not prevented, may cause serious injury or death.

### **A WARNING**

WARNING indicates a potentially dangerous situation which, if not avoided, could result in death or serious injury.

### **A** CAUTION

CAUTION indicates a potentially dangerous situation which, if not avoided, can result in minor or moderate injury.

### NOTICE

NOTICE used in reference to procedures not connected to physical injuries.

#### NB

Electrical equipment must be installed, used and repaired by qualified personnel only.

Eliwell accepts no responsibility for any consequences resulting from the use of this material.

A qualified person is someone who has specific skills and knowledge regarding the structure and the operation of electrical equipment and who has received safety training on how to avoid the inherent dangers.

#### Permitted use

This product is used to control stepper bipolar electronic expansion valves.

For safety reasons, the device must be installed and used in accordance with the instructions provided. In particular, parts carrying dangerous voltages must not be accessible under normal conditions.

The device must be adequately protected from water and dust with regard to the application, and must only be accessible using tools (with the exception of the front panel).

The device is also suitable for use in commercial and household refrigeration appliances and/or similar equipment and has been tested for safety aspects in accordance with the harmonized European reference standards.

#### Prohibited use

Any use other than that described in the previous paragraph, Permitted Use, is strictly forbidden.

The relay contacts supplied are electromagnetic and are subject to wear. The protection devices required by international or local laws must be installed outside the instrument.

### Liability and residual risks

The liability of Eliwell Controls limited to the correct and professional use of the product according to the directives referred to herein and in the other supporting documents, and does not cover any damage (including but not limited to) the following causes:

- unspecified installation/use and, in particular, in contravention of the safety requirements of established legislation or specified in this document
- use on equipment which does not provide adequate protection against electrocution, water and dust in the actual installation conditions;
- · use on equipment in which dangerous components can be accessed without the use of specific tools;
- installation/use on equipment which does not comply with established legislation and technical standards.

### **Disposal**

The equipment (or product) must be subjected to separate waste collection in compliance with the local legislation on waste disposal.

#### Product related information

### **A A** DANGER

#### HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Turn off all devices, including connected devices, before removing any covers or doors, or installing/un-installing accessories, hardware, cables, or wires.
- · Always use a properly rated voltage sensing device to confirm the power is off where and when indicated.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.

This device is designed to operate outside of any dangerous location.

Install this device only in areas known to be free from dangerous atmospheres.

### **A** DANGER

#### POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only.

Failure to follow these instructions will result in death or serious injury.

### **A** DANGER

#### POTENTIAL FOR EXPLOSION AND FIRE

Do not use this device with applications that use R290 inflammable refrigerant.

Failure to follow these instructions will result in death or serious injury.

### WARNING

#### LOSS OF CONTROL

- The control system designer must consider the potential failure modes of the control circuit and, for some critical control functions, provide a means for reaching a safe condition during and after a circuit failure. Examples of critical control functions are the emergency stop and end of travel stop, power supply cut-off and restart.
- · Separate or redundant control circuits must be provided for critical control functions.
- The system control circuits can include communication connections. Keep in mind the implications of transmission delays or sudden connection failures.
- Comply with all the standards regarding accident protection and the local applicable safety directives.
- Every implementation of this device must be tested individually and completely in order to check its proper operation before putting it in service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

(1) For additional information, refer to the standards NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and NEMA ICS 7.1 (latest edition) "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or to equivalent standards that regulate your particular location.

### WARNING

#### **UNINTENDED EQUIPMENT OPERATION**

- Only use software approved by Eliwell Controls when using this device.
- Update your application program each time the physical hardware configuration changes.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

#### 1 - INTRODUCTION

### 1.1 - General description

**V910 V3** is the compact solution of the Eliwell Controls platform stepper electronic expansion motor valves suited for a range of needs in the HVAC/R market and beyond.

The possibility to select refrigerant types and compatibility with most commercially available valves make the **V910 V3** a particularly versatile module.

V910 V3 offers the possibility to configure a refrigerant that is not included in the factory default settings.

The valve controlled by driven motor under current and the independent operation for hot and cold by means of double regulator mapping improves performance.

Indeed, the **V910 V3** ensures a very precise, stable and reliable control of the refrigerant flow, consequently increasing efficiency and energy savings by adjusting the overheating and opening the valve according to the performance demanded by the system and in different working conditions.

Reliability is guaranteed by the isolated serial connections and the use of back-up sensors.

**V910 V3** is available in various models, which can be used as single actuators or in "stand-alone" mode (via Digital inputs or RS485 serial port). The models are available in the version with assembly on DIN rail.

An **SKP 10** terminal is used to configure the parameters and operations to carry out on the device, to be connected to the LAN serial port inside the door.

**V910 V3** also includes the interfacing with the serial Modbus RTU communication standard and the possibility of downloading parameter and applicative via the M171 optical programming pen drive (**MFK 100 / UNICARD**).

Ratiometric pressure sensors and SKP 10 terminals can also be connected with no need for any further serial interfaces.

All digital inputs and digital outputs are independent and configurable, meaning they can be adapted to fit any system.

Power supply is 24 Vac /24 Vdc.

### 1.2 - Key functions

The key functions of the V910 V3 are as follows:

- · refrigerant selected via selectors (DIP switches) under the door
- back up probes for saturation control and evaporator output (overheating)
- · valve state shown via LEDs
- · parameter settings via keyboard or PC;
- MFK 100 / UNICARD to upload and download parameter and applicative maps
- terminal (up to 100 m) that can be connected directly with no serial interface;
- NTC configurable inputs, Pt1000, 4...20 mA, 0...10 V, 0...5 V ratiometric
- 2 digital inputs to control valve and/or alarms.

### 2 - VERSIONS AND ACCESSORIES

### 2.1 - Versions

| Version          | Analogue inputs with low voltage | Digital<br>inputs<br>no voltage | Digital outputs<br>with high<br>voltage | Open Collector<br>digital output | RS485<br>serial<br>integral | Power supply               |
|------------------|----------------------------------|---------------------------------|-----------------------------------------|----------------------------------|-----------------------------|----------------------------|
| V910 V3<br>RS485 | 4                                | 2                               | 1                                       | 1                                | Yes                         | 24 Vac/dc Imax 0.8 A/phase |

Tab. 1 Versions

### 2.2 - Terminal

| Version | Installation | Dimensions  | Display       | Power supply               |
|---------|--------------|-------------|---------------|----------------------------|
| SKP 10  | Panel        | 74x32x30 mm | LED / 4 digit | From <b>V910 V3</b> driver |

Tab. 2 Terminal

**SKP 10 Terminal** not supplied. To be ordered separately.

## 2.3 - Accessories

| Code          | Description                              |  |
|---------------|------------------------------------------|--|
| SKP 10        | LED 32x74 terminal display               |  |
| MFK 100       | MFK 100 programming pen drive            |  |
| UNICARD       | UNICARD programming pen drive            |  |
| SN8DAC11502AV | NTC 1.5 m FAST IP67 4x40 -50+110 °C Grey |  |
| SN8DEB21502C0 | NTC 1.5 m IP68 6x20 TPE with grey tab    |  |
| DMI 100-3     | Programmable cable                       |  |

Tab. 3 Accessories

#### **GENERAL NOTES:**

• Connection of remote keyboard via 3-way cables with no optional modules.

### 2.4 - List of compatible valves

The V910 driver is compatible with the valves listed below; for use with other valves, contact Eliwell Controls Technical Support.

### **WARNING**

#### UNINTENDED EQUIPMENT OPERATION

Check the valve parameters declared by the manufacturer before using the valve in generic valve configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Eliwell Controls Srl is not liable for the data provided by the valve manufacturer, including any technical modifications or updates. Consult the product manual and the valve manual to check the suitability and correct configuration.

Always consult the technical manual of the valve manufacturer, particularly to check the plate data and correct operations.

| Version                                      | Power supply: | Notes   |
|----------------------------------------------|---------------|---------|
| DANFOSS ETS50                                | 12 V          | Bipolar |
| DANFOSS ETS100                               | 12 V          | Bipolar |
| Danfoss CM 10, 20, 30, 40                    | 24 V          | Bipolar |
| ALCO EX7                                     | 24 V          | Bipolar |
| ALCO EX8                                     | 24 V          | Bipolar |
| CAREL E2V E3V E4V E5V E6V E7V                | 12 V          | Bipolar |
| SPORLAN SER FROM 1.5 TO 20                   | 12 V          | Bipolar |
| SPORLAN SEI-30                               | 12 V          | Bipolar |
| SPORLAN SEI-50                               | 12 V          | Bipolar |
| ALCO EX4, EX5, EX6                           | 24 V          | Bipolar |
| SPORLAN SER(I) G, J, K, B, C, D              | 12 V          | Bipolar |
| Eliwell by Schneider electric SXVB Body 1    | 24 V          | Bipolar |
| Eliwell by Schneider electric SXVB Body 2, 3 | 24 V          | Bipolar |
| Eliwell by Schneider electric SXVB Body 4    | 24 V          | Bipolar |

Tab. 4 Compatible/Drivable valves

#### 3 - MECHANICAL ASSEMBLY

### 3.1 - Before starting

Before starting to install your system, read this chapter carefully. The use and application of information contained in this document requires experience in the design and programming of automated control systems. Only the user, the machine manufacturer or the system integrator can be familiar with all the process conditions and therefore only they are able to determine which automation equipment and relative safety devices and interlocks can be used in a correct and efficient manner. When the automation and control equipment and any other relative equipment or software are selected for a particular application, also the applicable local, regional and national standards and regulations must be taken into consideration. Caution must be used concerning compliance with all safety information, other electrical requirements or laws which may apply to your machine or process when using this device.

The use and application of information contained in this document requires experience in the design and programming of automated control systems. Only the user, the machine manufacturer or the system integrator can be familiar with all the conditions and factors present during installation and set up, preparing, starting-up and servicing the machine the process and therefore only they are able to determine which automation equipment and relative safety devices and interlocks can be used in a correct and efficient manner. When the automation and control equipment and any other relative equipment or software are selected for a particular application, also the applicable local, regional and national standards and regulations must be taken into consideration.

### **A WARNING**

#### REGULATORY INCOMPATIBILITY

Make sure that all equipment used and the systems designed comply with all applicable local, regional and national laws.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

### 3.2 - Disconnection from the power supply

All options and modules must be assembled and installed before installing the control system on an assembly rail, the panel door or other assembly surface. Before disassembling the equipment, remove the control systems from the assembly rail, assembly plate or panel

### **A A** DANGER

#### HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Turn off all devices, including connected devices, before removing any covers or doors, or installing/un-installing accessories, hardware, cables, or wires.
- Always use a properly rated voltage sensing device to confirm the power is off where and when indicated.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- Use only the specified voltage when operating this equipment and any associated products.

Failure to follow these instructions will result in death or serious injury.

### 3.3 - Operating instructions

This device is designed to operate outside of any dangerous location. Install this device only in areas known to be free from dangerous atmospheres.

### **A** DANGER

#### POTENTIAL FOR EXPLOSION

Install and use this equipment in non-hazardous locations only.

Failure to follow these instructions will result in death or serious injury.

### **A** DANGER

#### POTENTIAL FOR EXPLOSION AND FIRE

Do not use this device with applications that use R290 inflammable refrigerant.

Failure to follow these instructions will result in death or serious injury.

### WARNING

#### UNINTENDED EQUIPMENT OPERATION

Install and use the device in compliance with the conditions described in the general technical specifications.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

### 3.4 - Comments concerning installation

### **A** WARNING

#### UNINTENDED EQUIPMENT OPERATION

- · Use appropriate safety interlocks where personnel and/or equipment hazards exist.
- · Install and operate this equipment in an enclosure appropriately rated for its intended environment.
- For power line and output circuit fuses and connections, comply with local and national regulations corresponding to the nominal current and voltage of the device being used.
- · Do not use this equipment in safety-critical machine functions.
- Do not disassemble, repair, or modify this equipment.
- · Do not connect wires to unused terminals and/or terminals indicated as "No Connection (N.C.)".
- · Do not install the devices in places subject to high humidity and/or dirt.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

**NOTE**: Fuses type JDYX2 or JDYX8 are UL recognised and CSA type-approved.

For mechanical sizes see "3.8 - Mechanical assembly" on page 19.

The devices for electronic V910 V3 expansion valves will be fitted on a DIN rail.

When handling the equipment use caution to avoid damage caused by electrostatic discharge. In particular the unshielded connectors and in certain cases the open circuit boards are extremely vulnerable to electrostatic discharge.

### **A WARNING**

#### FAULTY OPERATION OF EQUIPMENT DUE TO ELECTROSTATIC DISCHARGE

- · Keep the device in the protective packaging until ready for installation.
- The device must only be installed in type-approved casings and/or in points that prevent accidental access and provide protection from electrostatic discharge as defined in IEC 1000-4-2.
- When handling sensitive equipment, use an antistatic bracelet or equivalent earthed protective device against electrostatic discharge.
- Before handling the device, always discharge the static electricity from the body by touching an earthed surface or type-approved antistatic mat.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

### 3.5 - Installation of general valve

### **A WARNING**

#### UNINTENDED EQUIPMENT OPERATION

Check the valve parameters declared by the manufacturer before using the valve in generic valve configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

### 3.6 - Installation of V910 V3

The acceptable room temperature range for correct operation is between –5 and 55 °C (23... 131 °F), with maximum relative humidity of 90% (in the absence of condensation).

Do not mount the device in places exposed to high levels of dirt or humidity. The device is suitable for use in environments with ordinary or normal levels of pollution. Keep the area around the device cooling slots adequately ventilated.

The TTL serial is located on the upper part of the front cover and is inserted vertically.

The instrument is intended for DIN rail mounting.

Referring to Fig. 1, for installation on the DIN rail proceed as follows,

- 1. move the two "spring docking devices" to their standby position (use a screwdriver to press against the relative compartments);
- 2. Install the device on the DIN rail pressing on the "spring docking devices" with your fingers to put them into the locked position.

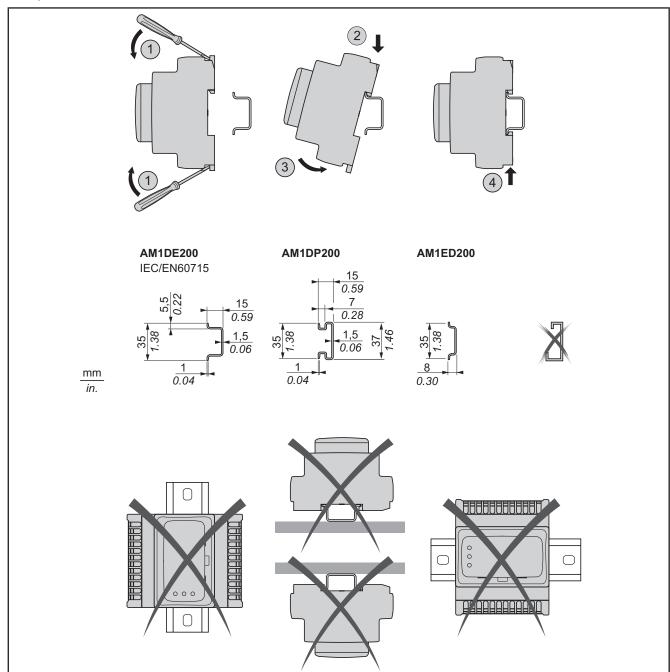



Fig. 1 Installation

The drivers for **electronic V910 V3 expansion valve** have been designed as category IP20 and must be installed in a casing. Comply with the indicated distances when installing the product.

There are 3 types of distances:

- The drivers for electronic V910 V3 expansion valves controller and all sides of the cabinet (including the panel door).
- The driver terminal boards for electronic V910 V3 expansion valves and the wiring raceways.
   These distances reduce the electromagnetic interference between the controller and the wiring raceways.
- The drivers for electronic V910 V3 expansion valves and the other heat-generating devices installed in the same cabinet.

### **A WARNING**

#### UNINTENDED EQUIPMENT OPERATION

- · Place the devices dissipating the most heat in the top of the cabinet and ensure suitable ventilation.
- · Do not place these devices near or above any devices which could cause overheating.
- Install the device in a point that guarantees the minimum distances from all structures and adjacent equipment as indicated in this document.
- Install all equipment in conformity with the technical specifications given in the respective documentation.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

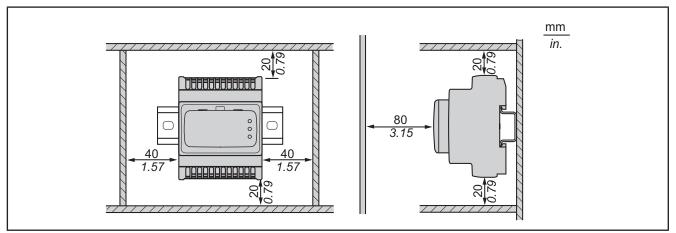



Fig. 2 Distances

#### 3.6.1 - Access to DIP switches/SKP 10

When handling the equipment use caution to avoid damage caused by electrostatic discharge. In particular the unshielded connectors and in certain cases the open circuit boards are extremely vulnerable to electrostatic discharge.

### **A WARNING**

### FAULTY OPERATION OF EQUIPMENT DUE TO ELECTROSTATIC DISCHARGE

- · Keep the device in the protective packaging until ready for installation.
- The device must only be installed in type-approved casings and/or in points that prevent accidental access and provide protection from electrostatic discharge as defined in IEC 1000-4-2.
- When handling sensitive equipment, use an antistatic bracelet or equivalent earthed protective device against electrostatic discharge.
- Before handling the device, always discharge the static electricity from the body by touching an earthed surface
  or type-approved antistatic mat.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Referring to Fig. 3, for access to the DIP switches proceed as follows:

- 1. if necessary, use a flat-edge screwdriver or the nail of your index finger to open the door
- 2. carefully configure the selectors (DIP switches) or connect SKP 10
- 3. if necessary, close the front of the keyboard by pressing with your fingers.

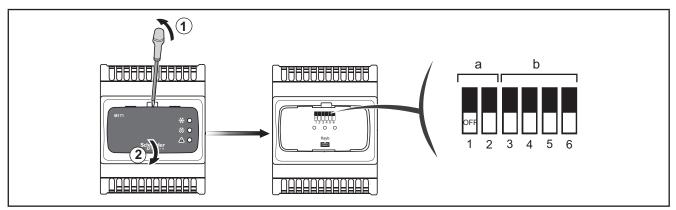



Fig. 3 Access to DIP switches/SKP 10

- a. Upload/Download parameters from MFK 100 / UNICARD to V910 V3
- b. Select network address
- c. Select type of refrigerant

### 3.7 - Assembly of the SKP 10 terminal

The SKP 10 terminal is designed for panel mounting (Fig. 4).

Do not mount the device in places exposed to high levels of dirt or humidity. The device is suitable for use in environments with ordinary or normal levels of pollution. Keep the area around the device cooling slots adequately ventilated.

To mount the SKP 10, proceed as follows:

- 1. make a 71x29 mm hole (2.80x1.14 in.)
- 2. insert the instrument
- 3. fix the SKP 10 using the rods supplied.

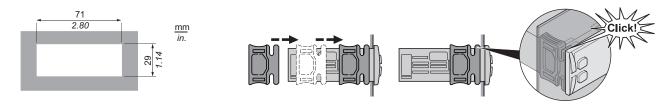



Fig. 4 Assembly of SKP 10

## 3.8 - Mechanical assembly

|                                       | Length (L) mm | Depth (d) mm                       | Height (H) mm | Notes          |
|---------------------------------------|---------------|------------------------------------|---------------|----------------|
| SKP 10 front cover                    | 76.4          | -                                  | 35            | (+0.2 mm)      |
| V910 V3 (cap) front cover             | 70            | -                                  | 45            | (+0.2 mm)      |
| SKP 10 measurements                   | 86            | 30                                 | 26            | -              |
| V910 measurements                     | 70.2          | 61.6<br>56.4 from Din bar to cover | 87            | 4DIN           |
| Hole for panel-mounting <b>SKP 10</b> | 71            | -                                  | 29            | (+0.2/-0.1 mm) |

Tab. 5 Mechanical dimensions

### 4 - ELECTRICAL CONNECTIONS

### 4.1 - Best practices for wiring

The following information describes the guidelines for wiring and the best practices to follow when using the drivers for **electronic V910 V3 expansion valves**.

### A A DANGER

#### HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Turn off all devices, including connected devices, before removing any covers or doors, or installing/un-installing accessories, hardware, cables, or wires.
- · Always use a properly rated voltage sensing device to confirm the power is off where and when indicated.
- Replace and secure all covers, accessories, hardware, cables, and wires and confirm that a proper ground connection exists before applying power to the unit.
- · Use only the specified voltage when operating this equipment and any associated products..

Failure to follow these instructions will result in death or serious injury.

### **A WARNING**

#### LOSS OF CONTROL

- The control system designer must consider the potential failure modes of the control circuit and, for some critical
  control functions, provide a means for reaching a safe condition during and after a circuit failure. Examples of critical
  control functions are the emergency stop and end of travel stop, power supply cut-off and restart.
- · Separate or redundant control circuits must be provided for critical control functions.
- The system control circuits can include communication connections. Keep in mind the implications of transmission delays or sudden connection failures.
- Comply with all the standards regarding accident protection and the local applicable safety directives.
- Every implementation of this device must be tested individually and completely in order to check its proper operation before putting it in service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

(1) For additional information, refer to the standards NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and NEMA ICS 7.1 (latest edition) "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems" or to equivalent standards that regulate your particular location.

#### 4.1.1 - Wiring guidelines

For wiring the drivers for **electronic V910 V3 expansion valves** the following standards must be respected:

- The I/O and communication wiring must be kept separate from the electrical wiring. These two types of wirings must be kept in separate raceways.
- Check that the operating conditions and environment comply with the specification values.
- Use wires of the correct diameter and suited to the voltage and current requirements.
- Use copper conductors (obligatory).
- Use twisted-pair shielded wires for analogue and/or high-speed I/Os.
- Use twisted-pair shielded wires for networks and field buses.

Use correctly earthed shielded wires for all analogue and high-speed inputs and outputs and communication connections. If shielded wires cannot be used for these connections, the electromagnetic interference may deteriorate the signal. Deteriorated signals can result in the controller, modules or attached equipment operating incorrectly.

### WARNING

#### UNINTENDED EQUIPMENT OPERATION

- Use shielded wires for all high-speed I/O, analogue I/O and communication signals.
- Earth the wire shields for all analogue I/O, high-speed I/O and communication signals in a single point (1).
- · Lay the communication and I/O cables separately from the power cables.
- · Reduce the length of the connections as far as possible and avoid winding them round electrically connected parts.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

(1) Earthing in several points is permitted if the connections are made to an equipotential earth surface that is sized to avoid damage to the cable shields in the event of a short circuit in the power supply.

**NOTE**: The surface temperatures can exceed 60 °C. Lay the main wiring (power wires) separately from the secondary wiring (very low voltage wire coming from intermediate power sources). Where this is not possible, double insulation is required in the form of cable recesses or raceways.

#### 4.1.2 - Rules for screw-type terminal board

The table below illustrates the types of cables and wire sections for a screw-type terminal board with 5.08 or 5.00:

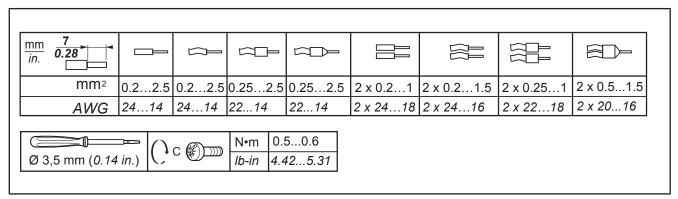



Fig. 5 Step **5.00** mm (0.197 in) or **5.08** mm (0.20 in)

Copper conductors must be used.

### **A A** DANGER

#### LOOSE WIRING CAN RESULT IN ELECTRIC SHOCK

- · Tighten the connections in compliance with the technical specifications for pairs.
- Do not insert more than one wire in each connector on the terminal board without the ends of the cables specified in the tables given in the information on Rules for screw-type terminal boards.

Failure to follow these instructions will result in death or serious injury.

### **A** DANGER

#### **FIRE HAZARD**

- · Use only the recommended wire sections for current capacity of the I/O channels and the electrical power.
- For wiring an 5 A relay output use conductors with section of at least 2.0 mm<sup>2</sup> (AWG 12) with a nominal temperature value of at least 80 °C (176 °F).

Failure to follow these instructions will result in death or serious injury.

### 4.1.3 - Protecting the outputs from damage from inductive loads

Depending on the load, a protection circuit may be required for controller outputs and certain modules. Inductive load switching may create voltage impulses that damage or short circuit or reduce the life of the output devices.

### **A** CAUTION

#### DAMAGE TO OUTPUT CIRCUITS DUE TO INDUCTIVE LOADS

Use an external protective device or circuit able to reduce the risks caused by voltage impulses in the switching of inductive loads.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

If the controller or module has relay outputs, these types of outputs can cope with up to 240 V a.c. Damage from inductive loads to this type of outputs can cause the contacts to weld and lead to the loss of control. Each inductive load must include a protective device such as a peak limiter, an RC circuit or a flyback diode. These relays do not support capacitive loads.

### **A WARNING**

### **RELAY OUTPUTS WELDED TO CLOSED POSITION**

- Always protect the relay outputs from damage resulting from alternating current inductive loads using a suitable external protective device or circuit.
- Do not connect the relay outputs to capacitive loads.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Protection circuit A: this protection circuit can be used for both continuous and alternating current load circuits.

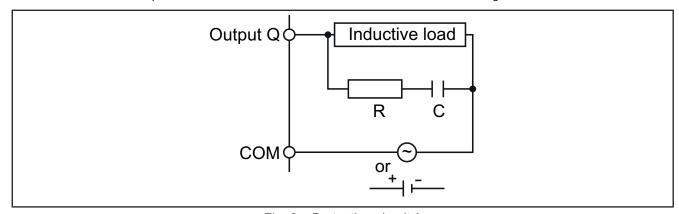



Fig. 6 Protection circuit A

 $\boldsymbol{C}$  Value from 0.1 to 1  $\mu F$ 

R Resistor with approximately the same load resistance value

Protection circuit B: this protection circuit can be used for continuous current load circuits.

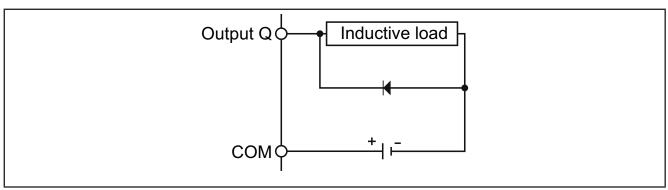



Fig. 7 Protection circuit B

Use a diode with the following nominal characteristics:

- Maximum inverse voltage: load circuit voltage x 10.
- · Direct current: greater than the load current.

Protection circuit C: this protection circuit can be used for both continuous and alternating current load circuits.

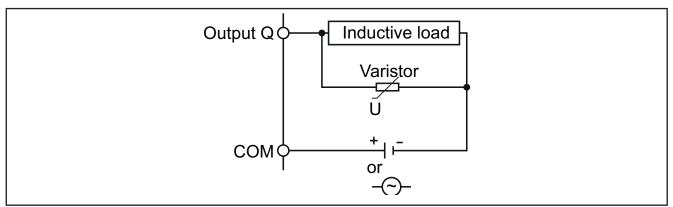



Fig. 8 Protection circuit C

In applications in which the inductive load is frequently and/or rapidly switched on and off, check that the maximum continuous energy (J) of the varistor is 20% or more higher than the peak load energy.

NOTE: Place the protection devices as close as possible to the load.

#### 4.1.4 - Specific considerations for handling

When handling the equipment use caution to avoid damage caused by electrostatic discharge. In particular the unshielded connectors and in certain cases the open circuit boards are extremely vulnerable to electrostatic discharge.

### **A WARNING**

#### FAULTY OPERATION OF EQUIPMENT DUE TO ELECTROSTATIC DISCHARGE

- · Keep the device in the protective packaging until ready for installation.
- The device must only be installed in type-approved casings and/or in points that prevent accidental access and provide protection from electrostatic discharge as defined in IEC 1000-4-2.
- When handling sensitive equipment, use an antistatic bracelet or equivalent earthed protective device against electrostatic discharge.
- Before handling the device, always discharge the static electricity from the body by touching an earthed surface or type-approved antistatic mat.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Before any operations, check that the device is connected to a suitable external power supply.

See "5.4 - Electrical connections" on page 33.

 $Before \ connecting \ the \ valve, \ carefully \ configure \ the \ \textbf{V910 V3} \ driver, \ by \ selecting \ the \ type \ of \ valve \ from \ the \ list \ of \ compatible \ valves.$ 

### **A WARNING**

#### UNINTENDED EQUIPMENT OPERATION

Check the valve parameters declared by the manufacturer before using the valve in generic valve configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Always disconnect the equipment's power supply before carrying out any maintenance on the electrical connections. For a proper connection, stick to the following:

- Power supplies other than those specified can seriously damage the system.
- · Use cables of suitable cross-section for the terminals used.
- Separate the cables of probes and digital inputs from inductive loads and high voltage connections to prevent any electromagnetic interference. Do not place the probe cables near other electrical equipment (switches, meters, etc.).
- Reduce the length of the connections as far as possible and avoid winding them round electrically connected parts.
- To avoid causing static discharges, do not touch the electronic components on the boards.
- The device must be connected to a suitable power supply with the characteristics given in the chapter on Technical Specifications.

### 4.1.5 - Analogue inputs-probes

Probes have no connection polarity and can be extended using a normal bipolar cable (note that the extension of the probes influences the instrument's EMC electromagnetic compatibility: take great care with the wiring).

**NOTE:** probes have a specific insertion polarity which must be observed.

### **NOTICE**

#### **INOPERABLE DEVICE**

Before switching on the electrical power, check all the wiring connections.

Failure to follow these instructions can result in equipment damage.

**NOTE:** apply the electrical power supply to all devices powered externally after applying the electrical power to the drivers for **electronic V910 V3 expansion valves**.

### WARNING

#### **FAULTY OPERATION OF EQUIPMENT DUE TO CONNECTIONS**

The device's signal cables (probes, digital inputs, communication, and relative power supplies), must be laid separately from the power cables.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

#### 4.1.6 - Serial connections

Pay special attention when connecting serial lines. Incorrect wiring may cause the device to work incorrectly or not at all.

| Label                                                                                                | Description                                                                                                               |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                      | Use a 5-wire TTL cable up to 30 cm in length.                                                                             |
| TTL                                                                                                  | We recommend using a TTL cable supplied by Eliwell Controls.                                                              |
|                                                                                                      | Contact Eliwell Controls'sales office to check availability of the item.                                                  |
| MFK / UNICARD TTL serial present on the upper part of the device for connection to MFK 100 / UNICARD |                                                                                                                           |
| Keyb                                                                                                 | 3-wire voltage LAN serial inside the door for connection to the I <b>SKP 10</b> terminal.  Max distance 100 m (328.08 ft) |

Tab. 6 Serial connections

NOTE: The Keyb connection must be used to configure the device and to view the resources.

**NOTE**: we recommend you use this connection to work temporarily on the driver.

### 4.2 - Wiring diagrams

Incorrect cabling causes irreversible damage to the drivers for electronic V910 V3 expansion valves.

### **NOTICE**

### **INOPERABLE DEVICE**

Before switching on the electrical power, check all the wiring connections.

Failure to follow these instructions can result in equipment damage.

### 4.2.1 - V910 V3 electric diagrams

| Terminal   | Label          | Description                                | Notes                                                             | Parameters         |
|------------|----------------|--------------------------------------------|-------------------------------------------------------------------|--------------------|
| 2-3*       | Open Collector | Solenoid valve / Alarm                     | 2=dO; 3= 12 Vdc<br>Max LOAD 100 mA                                | dL91               |
| 3          | 12 Vdc         | Probe power supply                         | Power supply for probes with inputs under current 420 mA and O.C. | -                  |
| 4 -5 -6 -7 | Valve Output   | Valve output                               | 4= W2-; 5=W2+; 6=W1-; 7=W1+                                       | -                  |
| 8-9        | Supply         | Power supply                               | Power supply Vdc 8=+; 9=-<br>Respect the polarity                 | -                  |
| 11-12      | DO1            | Relay output                               | Solenoid valve · Alarm                                            | dL90               |
| 14-15-16   | 485            | Direct connection<br>Televis/Modbus serial | -                                                                 | -                  |
| 17*        | DI1            | Digital input 1                            | Connecting the digital inputs to a power                          | dL40               |
| 18*        | DI2            | Digital input 2                            | supply output is strictly forbidden                               | dL41               |
| 19         | GND            | Ground                                     |                                                                   | -                  |
| 20         | 5 Vdc          | Probe power supply                         | For ratiometric probe                                             | -                  |
| 21*        | Al1            | Analogue input 1                           | Saturation probe                                                  | dL10 / dL11 / dL20 |
| 22*        | Al2            | Analogue input 2                           | Back-up saturation probe                                          | dL12 / dL13 / dL21 |
| 23*        | Al3            | Analogue input 3                           | Evaporator output probe (overheating)                             | dL22               |
| 24*        | Al4            | Analogue input 4                           | Evaporator output probe (overheating) of back-up                  | dL23               |

Tab. 7 Wiring diagrams

<sup>\*</sup> Default factory settings for CO<sub>2</sub> applications (cascade systems).

### V910 V3

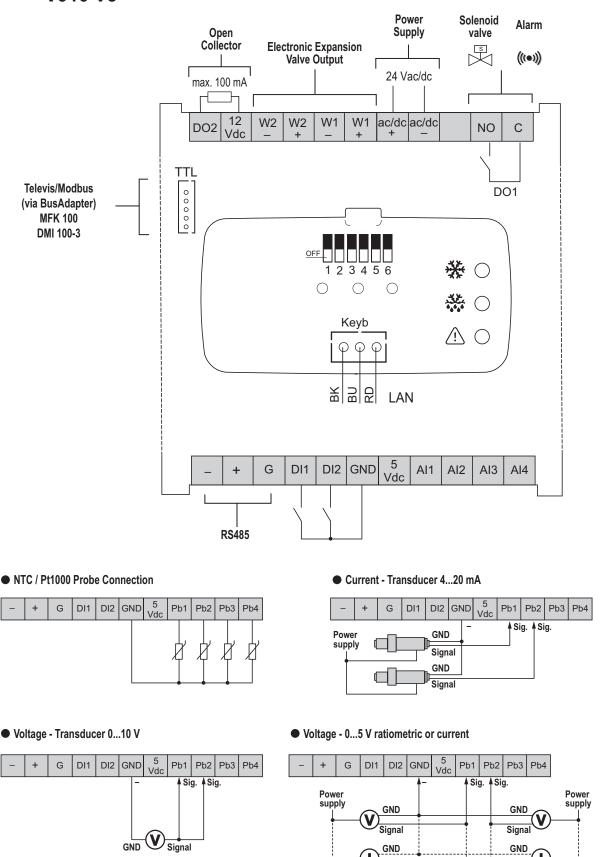



Fig. 9 Electric diagram V910 V3

Signal

### 4.3 - V910 V3 - Connection SKP 10

### V910 V3

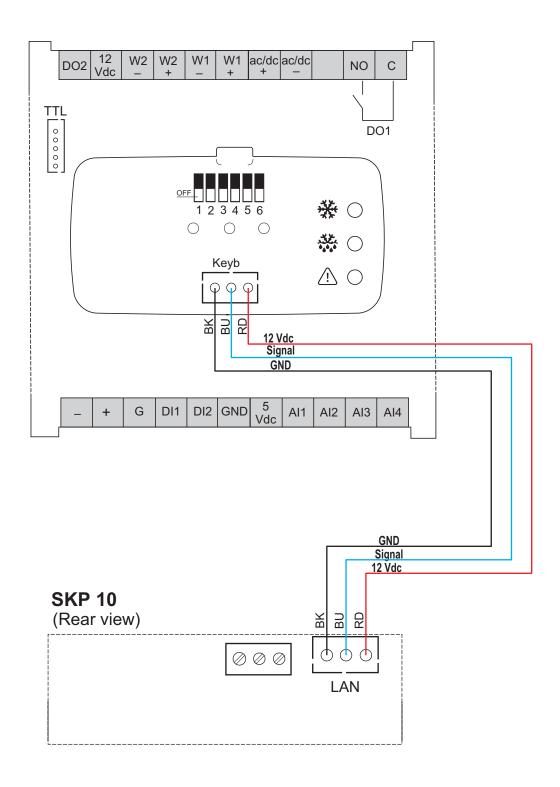



Fig. 10 V910 V3 - Connection SKP 10

28

### 4.4 - Connection of compatible valves

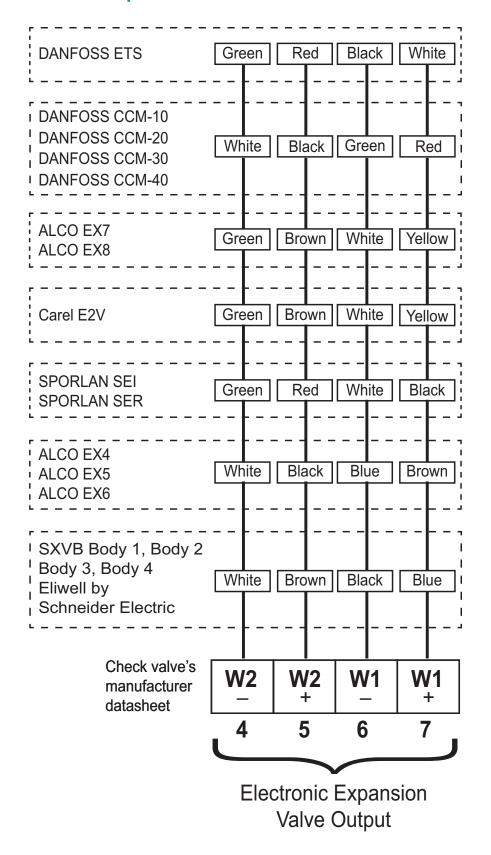



Fig. 11 Electronic expansion valve outlet

#### 5 - TECHNICAL DATA

All the system components of drivers for **electronic V910 V3** expansion valves meet the European Community (CE) requirements for open devices. They must be installed in a casing or other designated place to suit the environmental conditions and minimise the risk of involuntary contact with high voltages. Use metal casings to improve the immunity of the electromagnetic fields of the driver's system for **electronic V910 V3** expansion valves. This device meets the CE requirements indicated in the table below.

### **A WARNING**

#### UNINTENDED EQUIPMENT OPERATION

Do not exceed any of the nominal values specified in this chapter.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The application of incorrect current and voltage values to the analogue inputs and outputs may damage the electronic circuits. Moreover, connecting a current input device to an analogue input configured for voltage and vice versa will also damage the electronic circuits.

### NOTICE

#### **INOPERABLE DEVICE**

- Do not apply voltages higher than 11 V c.c.to the analogue inputs of the controller or the input/output expansion module if the analogue input is configured as a 0-10 V c.c input.
- Do not apply currents over 30 mA to the controller analogue inputs or the input/output expansion module when the analogue input is configured as an input 0-20 mA or 4-20 mA.
- Make sure that the signal applied corresponds to the analogue input configuration.

Failure to follow these instructions can result in equipment damage.

## 5.1 - General technical specifications

| The product complies with the following harmonized standards | EN 60730-1                                |
|--------------------------------------------------------------|-------------------------------------------|
| Use                                                          | Stepper electronic expansion valve driver |
| Installation                                                 | on DIN Omega bar support                  |
| Type of action                                               | 1.B                                       |
| Pollution class                                              | 2 (normal)                                |
| Over voltage category                                        | II                                        |
| Nominal pulse voltage                                        | 2500 V                                    |
| Digital outputs                                              | Refer to the label on the device          |
| Fire resistance category                                     | D                                         |
| Software class and structure                                 | A                                         |
| Type of disconnection or suspension for each circuit         | Micro-disconnection                       |
| Period of electrical stress on the insulating parts          | Long period                               |

Tab. 8 Classification

|                                                       | Standard      | Min.           | Max.           |
|-------------------------------------------------------|---------------|----------------|----------------|
| Voltage of NON insulated power supply                 | 24Vac/dc ±10% | -              | -              |
| Power supply frequency                                | 50 Hz/60 Hz   | -              | -              |
| Power consumption                                     | 30 VA / 25 W  | -              | -              |
| Insulation class                                      | 2             | -              | -              |
| Ambient operating temperature                         | 25 °C (77 °F) | -5 °C (23 °F)  | 55 °C (131 °F) |
| Operating environment humidity (with no condensation) | 30%           | 10%            | 90%            |
| Storage temperature                                   | 25 °C (77 °F) | -20 °C (-4 °F) | 85 °C (185 °F) |
| Operating environment humidity (with no condensation) | 30%           | 10%            | 90%            |

Tab. 9 General Specifications

## 5.2 - Input/output specifications

| Type and label                                           | Description                                                                                                                                                    |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital inputs<br>ddi1 - ddi2                            | 2 voltage-free digital inputs closure current for ground: 0.5 mA                                                                                               |
| Digital outputs with high voltage ddO1                   | 1 SPST relay: N.A. 5 A 250 Vac                                                                                                                                 |
| Analogue inputs<br>dAi1 - dAi2<br>dAi3 - dAi4            | dAi1 - dAi2 2 configurable inputs: a) NTC temperature 103AT-2 10 kΩ, Pt1000 b) input under current 420 mA / ratiometric 0-5 V c) voltage connection of) 0-10 V |
|                                                          | dAi3 - dAi4 2 configurable inputs like temperature NTC 103AT 10 kΩ or Pt1000. Measurement range: -50 99.9 °C; (-58 211.82 °F)                                  |
| Digital output Open Collector SELV ddO2 with low voltage | 1 Open Collector output Max. current 100 mA                                                                                                                    |

Tab. 10 Input / output characteristics

|                                                                                                                         | <b>NTC103*</b><br>-50+99.9 °C | <b>Pt1000*</b><br>-50+99.9 °C | 420 mA  | 010 V   | 0-5 V    |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|---------|---------|----------|
| Al1                                                                                                                     | ~                             | ~                             | ~       | ~       | ~        |
| Al2                                                                                                                     | ~                             | ~                             | ~       | ~       | ~        |
| Al3                                                                                                                     | ~                             | ~                             | -       | -       | -        |
| Al4                                                                                                                     | ~                             | ~                             | -       | -       | -        |
| Resolution                                                                                                              | 0.1 °C                        | 0.1 °C                        | 0.1 bar | 0.1 bar | 0.1 bar  |
| F.S. precision                                                                                                          | 1%                            | 1%                            | 1%      | 1%      | 1%       |
| Impedance                                                                                                               | -                             | -                             | 100 ohm | 21 kohm | 110 kohm |
| NTC: NTC 103AT-2 (10kΩ @25 °C) BETA value 3435 * probes not included - contact the Eliwell Sales Office for accessories |                               |                               |         |         |          |

Tab. 11 Features of analogue inputs

#### 5.3 - Serial functions

| Label                           | Description                                                                                               |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| TTL                             | TTL serial to connect Personal Computer via interface module                                              |  |  |
| (MFK 100 / DMI 100-3 / UNICARD) | Serial TTL for <b>MFK 100 / DMI 100-3 / UNICARD connection</b> load/unload parameters and/or applications |  |  |
| Keyb                            | 3-way JST connector inside the door for connection to <b>SKP 10</b> terminal                              |  |  |
| RS-485                          | Integrated opto-isolated RS-485 serial                                                                    |  |  |

Tab. 12 Serial features

#### 5.4 - Electrical connections

The drivers for electronic **V910 V3** expansion valves and i associated devices require electric power supply with a nominal voltage of 24 V c.a. / 24 V c.c. The power supplies/transformers must be SELV (Safety Extra Low Voltage) classified according to IEC 61140. These electrical power sources are isolated between the input and output electrical circuits of the power supply and are separated by ground (earth), PELV systems and other SELV systems.

### A A DANGER

#### RING GROUND CAUSING ELECTRICAL SHOCK AND/OR EQUIPMENT MALFUNCTION

- Do not connect the connection to 0 V on the power supply/transformer powering this device to an external earth connection (ground).
- Do not connect the connection to 0 V or earth (ground) on the sensors and actuators connected to this device to an external ground connection.
- If necessary, use separate power supplies/transformers to power the sensors and actuators isolated from this device.

Failure to follow these instructions will result in death or serious injury.

If the specified voltage field is not maintained, or if the actual separation of the SELV circuit connected to the equipment in question is compromised, the products might not work as they should or become damaged and be no longer usable.

#### WARNING

#### POTENTIAL OF OVERHEATING AND FIRE

- · Do not connect the equipment directly to mains power.
- To power this devices, use exclusively safe isolated power supplies/transformers (SELV).

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The device must be connected to an appropriate power supply/transformer with the following characteristics:

| Primary voltage           | Depending on the requirements of the individual unit and/or the country of installation. |
|---------------------------|------------------------------------------------------------------------------------------|
| Secondary voltage         | 24 Vac/dc                                                                                |
| Power supply frequency V~ | 50/60 Hz                                                                                 |
| Power                     | 35 VA                                                                                    |

### 5.5 - Mechanical data

| Description                                                                                                               | Versions     |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| Terminals and connectors:                                                                                                 |              |  |  |  |  |
| 1 x JST 3-way JST connector to <b>SKP 10</b> terminal.  To use with <b>COLV000033200 CABLE. LAN/FLEX 2 m double conn.</b> | All versions |  |  |  |  |
| Casing:                                                                                                                   |              |  |  |  |  |
| PC+ABS plastic resin with V0 flammability rating                                                                          | All versions |  |  |  |  |

Tab. 13 Mechanical data

### 6 - USER INTERFACE

The interface, comprising the front cover of the controller, allows you to perform all operations needed to use the device.



Fig. 12 V910 V3

### 6.1 - LED V910 V3

There are 3 LEDS on the front of the V910 V3 driver which indicate the status of the valve.

Inside the door there are 3 more LEDS used to upload/download parameters and/or applications (see chapter "MFK 100")

|     | LED     | Colour | On                                                            | Flas                 | hing                                   | Off        |
|-----|---------|--------|---------------------------------------------------------------|----------------------|----------------------------------------|------------|
| **  | EEV     | Green  | Valve regulation                                              | (no adjustmer        | closed<br>nt in progress)<br>satisfied | NA*        |
| *** | Defrost | Yellow | Defrost in progress  Valve closed (no adjustment in progress) | No serial connection |                                        | No defrost |
|     | Alarm   | Red    | NA                                                            | Alarm<br>present     | No serial connection                   | No alarm   |

Tab. 14 LED **V910 V3** 

<sup>\*</sup> LED off indicates interruption of the driver power supply

### 6.2 - SKP 10

The **V910 V3** driver is a blind model with no display. Use the **SKP 10** terminal to work the device.

The values shown on the **SKP 10** terminal can have at most 4 digits or 3 digits plus a sign.



Fig. 13 SKP 10

### **KEYS**

|             | Key     | Single press (press and release)                                                                                                                                | Long press                                             |
|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|             | UP      | Rapid overheating Setpoint modification*     Increase the value / Move to next label                                                                            | F1: not used                                           |
| <b>&gt;</b> | DOWN    | <ul> <li>Rapid overheating Setpoint modification*</li> <li>Decrease the value / Move to previous label</li> </ul>                                               | F3: not used                                           |
| esc         | ESC key | <ul><li>Exit without saving new settings</li><li>Go back to previous level</li></ul>                                                                            | F2: not used                                           |
| set         | SET     | <ul> <li>Confirm value / exit and save new settings</li> <li>Move to next level</li> <li>Open State Menu.<br/>(folder, sub-folder, parameter, value)</li> </ul> | F4: refer to "6.4 - Main display settings" on page 38  |
| esc + set   | ESC+SET | Opens the Programming Menu                                                                                                                                      | Prg: refer to "6.4 - Main display settings" on page 38 |
| +>          | UP+DOWN | Alarm acknowledgement                                                                                                                                           | F5: not used                                           |

Tab. 15 Description of keys

<sup>\*</sup> Also modifiable from parameter dE31 and dE32.

#### **LED**

The display shows the value/resource set for the "main display".

If an alarm is given the Exx alarm code will alternate (if there are several alarms, the code with the lower value).

|             | LED    |                          |                                                                               |  |  |  |  |  |
|-------------|--------|--------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|
| No.         | Colour | Description              | Notes                                                                         |  |  |  |  |  |
| ABC         | Red    | Menu (ABC)               |                                                                               |  |  |  |  |  |
| <b>©</b>    | Red    | Display pressure (Bar)   | Values are in relative bars. If the value is PSI, the symbol does not appear. |  |  |  |  |  |
| ==          | Red    | Display temperature (°C) | If the value is °F<br>the symbol does not appear                              |  |  |  |  |  |
| $\triangle$ | Red    | Alarm                    |                                                                               |  |  |  |  |  |

Tab. 16 Description of LEDs

#### 6.3 - Access to folders - Menu structure

Folders are organised into menus.

Access to said folders is defined by the keys on the front cover as shown in "6.2 - SKP 10" on page 36.

In the paragraphs that follow (or chapters indicated), we will explain how to enter each individual menu.

There are 2 menus:

• "States" menu: refer to "6.5 - STATES Menu" on page 40;

• "Programming" menu: refer to "6.6 - PROGRAMMING Menu" on page 44;

There are 3 folders / sub-menus in the Programming Menu:

• "Parameters" menu (PAr folder): refer to "10 - PARAMETERS (PAr)" on page 83;

• "MFK" Menu (FnC folder): refer to "12 - MFK 100 (FnC FOLDER)" on page 105;

• "PASS" Password: refer to "10 - PARAMETERS (PAr)" on page 83;

# 6.4 - Main display settings

"Main display" is what the instrument displays by default, i.e. when the keys are not being used.

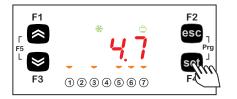
V910 V3 makes it possible to change main display according to your requirements.

Choose the required display from the "disp" menu.

To access the "disp" menu, hold down the "set" key for more than 3 seconds.

The main display can be selected from the following.

| Label | Description*                                            | Display value                                                                     | Display value if probe in error<br>(back-up)                                                                      |
|-------|---------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drE1  | Overheating temperature                                 | dAi3<br>Probe overheating                                                         | dAi4<br>Back-up overheating probe                                                                                 |
| drE2  | Saturation temperature of refrigerant                   | dAi1<br>Saturation probe                                                          | dAi2<br>Back-up saturation probe                                                                                  |
| drE3  | Overheating temperature<br>Back-up probe                | dAi4                                                                              | <br>(three dashes)                                                                                                |
| drE4  | Saturation temperature of the back-up Probe refrigerant | dAi2                                                                              | <br>(three dashes)                                                                                                |
| drE5* | Overheating                                             | Difference<br>drE1-drE2                                                           | NA                                                                                                                |
| drE6  | Refrigerant Pressure                                    | dAi1 In the case of configuration probe as Saturation probe 420 mA or ratiometric | dAi2 In the case configuring the probe as back-up saturation probe 420 mA or ratiometric Otherwise (three dashes) |
| drE7  | Percentage valve opening                                | percentage value of valve opening (0100%)                                         | <br>(three dashes)                                                                                                |


Tab. 17 Fundamental state display

- The analogue inputs are factory-set.
- The probe display is always at temperature (for pressure display, see "6.5.2 Input/output display" on page 42.

A step by step illustration of how to proceed is provided below.

<sup>\*</sup> Default.

#### **Display settings**



To open the "disp" menu to modify the main display setup, press and hold the set key for at least 3 seconds.





This will open the flashing menu on the previous display (in this case drE3).





To modify the display, scroll the menu using the "UP" and "DOWN" keys and press the "set" key to confirm.

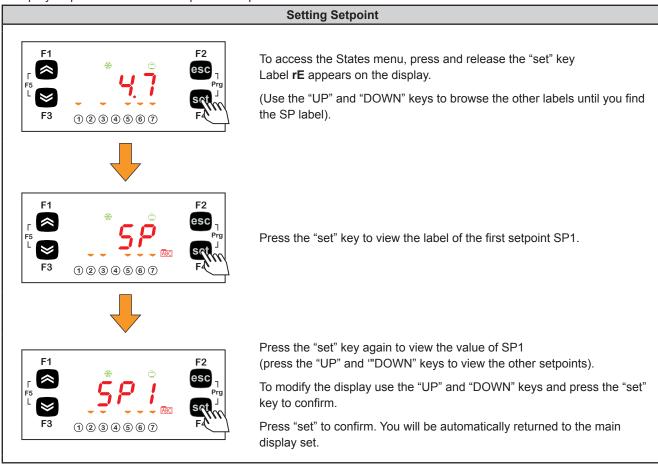
When you have decided the type of display (e.g.: drE1), press the set key to confirm. You will be automatically returned to the main display set.

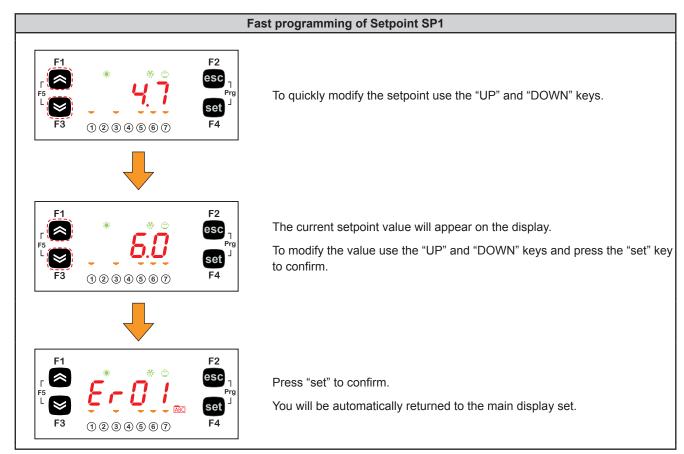
# 6.5 - STATES Menu

The resource values can be viewed in the **States** menu.

The setpoint can be viewed and modified.

| Label | Setpoint |      |      |      | Description                  | Edit                                                                                        |
|-------|----------|------|------|------|------------------------------|---------------------------------------------------------------------------------------------|
| rE    | drE1     | drE2 |      | drE7 | Fundamental<br>state display | No.<br>Only display for setting in this menu, see:<br>"6.5.1 - Setpoint setting" on page 40 |
| Ai    | dAi1     | dAi2 | dAi3 | dAi4 | Analogue inputs              | No                                                                                          |
| of    | ddi1     | ddi2 |      |      | Digital inputs               | No                                                                                          |
| dO    | ddO1     | ddO2 |      |      | Digital outputs              | No                                                                                          |
| AL    | Er01     | Er02 |      | Er15 | Alarms                       | No                                                                                          |
| SP    | SP1      | SP2  | SP3  | SP4  | Setpoint                     | Yes (excluding SP4)                                                                         |

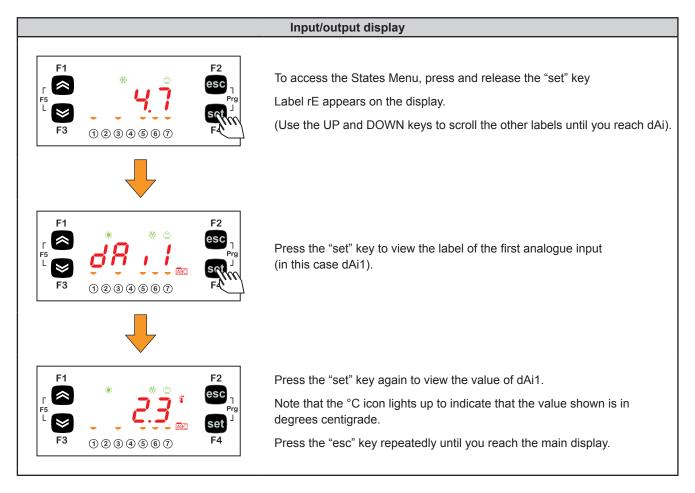

Tab. 18 **States** Menu


# 6.5.1 - Setpoint setting

| Setpoint | Description                        | Settable by parameter                                     | Notes                                                                                                |
|----------|------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| SP1      | setpoint<br>minimum<br>overheating | dE32                                                      | If <b>dE30</b> = 1 it is understood as objective overheating. Fast change using "UP" and "DOWN" keys |
| SP2      | setpoint<br>maximum<br>overheating | dE31                                                      | If <b>dE32</b> = 0 it is understood as the only overheating setpoint.                                |
| SP3      | Setpoint<br>MOP                    | dE52                                                      | Expressed in temperature units.                                                                      |
| SP4      | setpoint<br>dynamic<br>overheating | Display only, cannot be modified. Calculated dynamically. | Valid if <b>dE30</b> = 1.  If <b>dE30</b> = 0 the set is defined by <b>dE32</b> .                    |

Tab. 19 Setting Setpoint

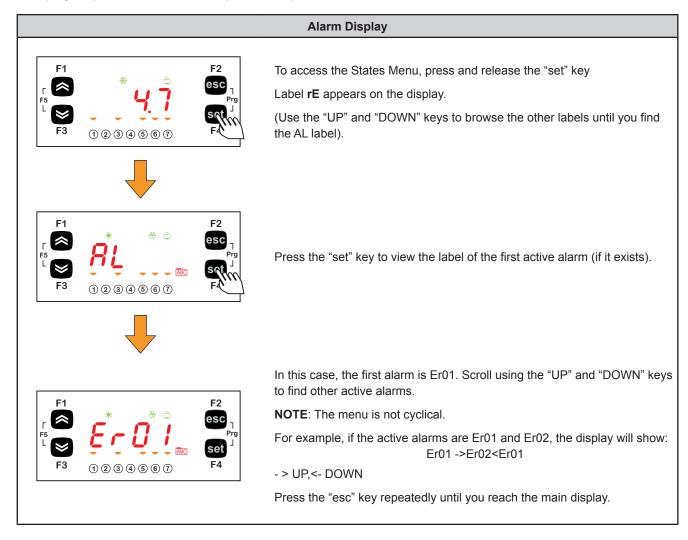
A step by step illustration of how to proceed is provided below.






#### 6.5.2 - Input/output display

A step by step account of how to display the analogue inputs are given below.


The procedure is the same for other I/Os\*.

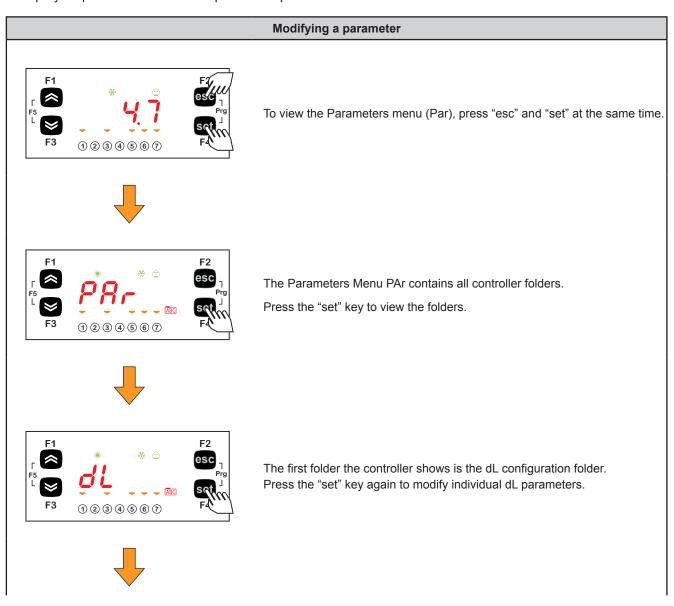


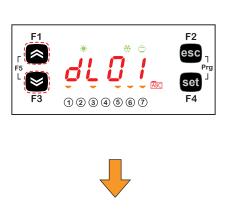
- \* For Digital inputs the value is:
- **0** = input not active (for digital inputs this is equivalent to input open)
- **1** = input active (for digital inputs this is equivalent to input short-circuited to ground).

#### 6.5.3 - Alarm display (AL folder)

A step by step illustration of how to proceed is provided below.




#### 6.6 - PROGRAMMING Menu


| Programming menu       |      | La | bel |    |
|------------------------|------|----|-----|----|
| Parameter folder       | PAr  |    |     |    |
| Parameters sub-folders | dL   | dF | dE  | Ui |
| Functions Folder       | FnC  |    |     |    |
| Password folder        | PASS |    |     |    |

Tab. 20 Programming menu

#### **6.6.1-Parameters (PAr folder)**

A step by step illustration of how to proceed is provided below.





The controller will show parameter dL00 (factory default settings).

Press the "UP" key to scroll through the various parameters or move to the next parameter (dL01 in this case) or the "DOWN" key to go back to the previous parameter (dL91 in this case)

dL00->dL01->dL02->...->dL91->dL00 dL91<-dL00<-dL01<-...<-dL90<-dL91

- > UP,<- DOWN



To view the parameter value (dL01 in this case), press the "set" key.





For parameter dL01, the value shown will be 2.

To change the parameter value, press the "UP" and "DOWN" keys.





Having selected a value, press the "set" key. \*\*

To exit this display and return to the previous level, press the "esc" key.

<sup>\*\*</sup>Press the "set" key to confirm the changed value; press the "esc" key to return to the previous level without saving the new value entered.

## 6.7 - MFK 100 (PAr/FnC folder)

Refer to "12 - MFK 100 (FnC FOLDER)" on page 105

# 6.8 - Setting a password (Par/PASS folder)

Access the PASS folder (basic view by pressing "esc" + "set" simultaneously and search the folder using the "UP" and "DOWN" keys); Set the PASS value to have access to the parameters visible for that password.

# Setting the password



To view the PASS folder in the main display, press "Esc" and "Set" at the same time.





The menu showing the list of folders will be displayed. Use the "UP" and "DOWN" keys to find the PASS folder.





Press the "set" key to enter the PASS folder.

From here, set the password (installer or manufacturer), press "set" and exit.

Now open and view parameters to change a value (refer to "10 - PARAMETERS (PAr)" on page 83).

#### 7 - I/O PHYSICAL CONFIGURATION

Every so often, new input models become available, as well as output models and other non-documented devices in the following information. For information on the new devices, contact the Eliwell Controls local reps.

#### **NOTICE**

#### **INOPERABLE DEVICE**

Each time a new I/O expansion model or other device recently released on to the market for this equipment is installed, update the controller firmware to the latest version.

Failure to follow these instructions can result in equipment damage.

NOTE: For further information on how to update the controller firmware, contact your local Eliwell Controls rep.

The application of incorrect current and voltage values to the analogue inputs and outputs may damage the electronic circuits. Moreover, connecting a current input device to an analogue input configured for voltage and vice versa will also damage the electronic circuits.

#### NOTICE

#### **INOPERABLE DEVICE**

- Do not apply voltages higher than 11 V c.c. to the analogue inputs of the controller or the input/output expansion module if the analogue input is configured as a 0-10 V c.c input.
- Do not apply currents over 30 mA to the controller analogue inputs or the input/output expansion module when the analogue input is configured as an input 0-20 mA or 4-20 mA.
- Make sure that the signal applied corresponds to the analogue input configuration.

Failure to follow these instructions can result in equipment damage.

# 7.1 - Analogue inputs

There are a total of four analogue inputs, referred to below as dAi1...dAi4.

Using the parameters, a physical resource (probe, digital input, voltage/current signal) can be "physically" configured for each type of input.

Inputs can be "physically" configured as specified in the table below.

| PAr. | Description                  | 0                       | 1         | 2      | 3*      | 4*                   | 5*     |
|------|------------------------------|-------------------------|-----------|--------|---------|----------------------|--------|
| dL00 | Input types<br>analogue dAi1 | Probe<br>not configured | NTC probe | Pt1000 | 4-20 mA | Ratiometric<br>0-5 V | 0-10 V |
| dL01 | Input types<br>analogue dAi2 | Probe<br>not configured | NTC probe | Pt1000 | 4-20 mA | Ratiometric<br>0-5 V | 0-10 V |
| dL02 | Input types<br>analogue dAi3 | Probe not configured    | NTC probe | Pt1000 | -       | -                    | -      |
| dL03 | Input types<br>analogue dAi4 | Probe<br>not configured | NTC probe | Pt1000 | -       | -                    | -      |

Tab. 21 Configuration of analogue inputs

<sup>\*</sup> If **dL00**/**dL01** = 3 or 4 or 5, the value read by the probe is automatically converted into a saturation temperature value.

| Analogue input | Parameter | Range             | Description                              |
|----------------|-----------|-------------------|------------------------------------------|
| dAi1           | dL10      | <b>dL11</b> 999.9 | Analogue input dAi1 fullscale value      |
| dAi1           | dL11      | -14,5 <b>dL10</b> | Analogue input dAi1 start of scale value |
| dAi2           | dL12      | <b>dL13</b> 999.9 | Analogue input dAi2 fullscale value      |
| dAi2           | dL13      | -14,5 <b>dL12</b> | Analogue input dAi2 start of scale value |

Tab. 22 Description of analogue inputs

The values read by analogue inputs can be configured in the parameters dL20...dL23

| Parameter | Description                           | Unit of measure | Range     |
|-----------|---------------------------------------|-----------------|-----------|
| dL20      | Analogue input dAi1 differential      | bar/PSI -°C/°F  | -12.012.0 |
| dL21      | dL21 Analogue input dAi2 differential |                 | -12.012.0 |
| dL22      | dL22 Analogue input dAi3 differential |                 | -12.012.0 |
| dL23      | dL23 Analogue input dAi4 differential |                 | -12.012.0 |

Tab. 23 Analogue inputs calibration

The analogue inputs can be configured according to the following table.

| PAr. | Function                          | Value | Description                                                                                                                                                | Factory settings                                 |
|------|-----------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| dL30 | Configuration analogue input dAi1 | 06    |                                                                                                                                                            | Saturation probe<br>(dL30 = 2)                   |
| dL31 | Configuration analogue input dAi2 | 06    | <ul> <li>0 = Disabled</li> <li>1 = Evaporator output (overheating)</li> <li>2 = Saturation</li> <li>3 = Evaporator output (overheating) back-up</li> </ul> | Discharge probe<br>(dL31 = 5)                    |
| dL32 | Configuration analogue input dAi3 | 06    | <ul> <li>3 = Evaporator output (overheating) back-up</li> <li>4 = Back-up saturation</li> <li>5 = Discharge</li> <li>6 = Regulator ON/OFF</li> </ul>       | Output probe evaporator (overheating) (dL32 = 1) |
| dL33 | Configuration analogue input dAi4 | 06    |                                                                                                                                                            | Not used (dL33 = 0)                              |

Tab. 24 Configuration of analogue inputs

#### 7.1.1- Valve opening direct control

If inputs Ai1 and dAi2 are "physically" configured in voltage or current, they are configurable for valve opening direct control as shown in the following table.

| PAr  | Function                               | Value |  |
|------|----------------------------------------|-------|--|
| dL00 | dL00 Analogue input dAi1 type          |       |  |
| dL01 | dL01 Analogue input dAi2 type          |       |  |
| dL30 | dL30 Analogue input dAi1 configuration |       |  |
| dL31 |                                        |       |  |

Tab. 25 Configuration of valve opening direct control

In this case the input is converted linearly as a percentage, again using the parameters:

| PAr  | Function                                      | Range |  |  |
|------|-----------------------------------------------|-------|--|--|
| dL10 | dL10 Analogue input dAi1 fullscale value      |       |  |  |
| dL11 | dL11 Analogue input dAi1 start of scale value |       |  |  |
| dL12 | dL12 Analogue input dAi2 fullscale value      |       |  |  |
| dL13 | dL13 Analogue input dAi2 start of scale value |       |  |  |

Tab. 26 Configuration of valve opening direct control

#### You must set:

#### dAi1

- dL10 to a value corresponding to a signal of 10 V or 20 mA
- dL11 to a value corresponding to a signal of 0 V or 4 mA

#### dAi2

- dL12 to a value corresponding to a signal of 10 V or 20 mA
- dL13 to a value corresponding to a signal of 0 V or 4 mA

#### Valve opening percentage

• dAi1(2) < -5.0: valve opening percentage of 0% is controlled

(clearing, that is repeated until the signal remains under the level of -5.0)

• -5.0 < dAi1 < 0.0: valve opening percentage of 0% is controlled

dAi1(dAi2) > 0.0: valve opening percentage is equal to the dAi1 value (dAi2).

# 7.2 - Digital inputs

There are 2 voltage free digital inputs, identified below as ddi1...ddi2.

The Digital inputs can be configured as shown in the following table.

| PAr. | Function                            | Value | Description                                                                                                | Notes                                                                                                                                                                                        |
|------|-------------------------------------|-------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dL40 | Configuration<br>digital input ddi1 |       | <ul> <li>0 = Digital input not configured</li> <li>±1 = ON/OFF adjustment</li> <li>±2 = Defrost</li> </ul> | <ul> <li>The positive values (+) indicate active for closed contact, the negative values (-) indicate active for open contact</li> <li>If configured (for values ≠ 0) the digital</li> </ul> |
| dL41 | Configuration<br>digital input ddi2 | -4+4  | • ±3 = Alarm • ±4 = Plant functioning mode  (only mode 0 and 1)                                            | inputs always have priority over any serial commands  • dL40 = dL41 digital input ddL1 has priority                                                                                          |

Tab. 27 Configuration of digital inputs

# 7.3 digital - outputs

| PAr. | Function                                                 | Value | Description                                                                                                           | Notes                                                                           |
|------|----------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| dL90 | Output configuration<br>Digital ddO1<br>(on relay)       |       | <ul> <li>0 = output controlled from serial</li> <li>±1 = Solenoid valve control</li> <li>±2 = alarm output</li> </ul> | The positive values (+) indicate active for closed contact, the negative values |
| dL91 | Digital output<br>ddO2 configuration<br>(Open Collector) |       | • ±3 = ON/OFF • ±4 = Remote (only in the case of dF02 = 1 serial)                                                     | (-) indicate active for open contact.                                           |

Tab. 28 Digital output configuration

<sup>\*</sup>in OFF **V910 V3** valve opening strength at 50% for 40 seconds.

#### 7.4 - DIP switch table

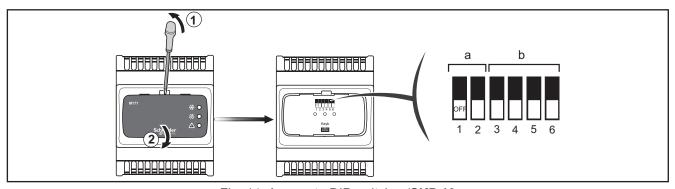



Fig. 14 Access to DIP switches/SKP 10

Inside the door there are six selectors (DIP switches) used for quick selection of refrigerant as well as selection of network address and use of the MFK 100 / UNICARD.

The operations can also be done from the **SKP 10** terminal by appropriately configuring the dF folder parameters.

The refrigerant can be selected using parameter **dE20**. In this case set the DIP switches to configuration 15 according to the table below.

|   | <b>5</b>                | 0             | D.C.                                           |     | Sele | ctors (D | IP switc | :hes) |     |
|---|-------------------------|---------------|------------------------------------------------|-----|------|----------|----------|-------|-----|
|   | Function                | Configuration | Refrigerant                                    | 1   | 2    | 3        | 4        | 5     | 6   |
|   |                         | 0             | R404A                                          | -   | -    | OFF      | OFF      | OFF   | OFF |
|   |                         | 1             | R22                                            | -   | -    | ON       | OFF      | OFF   | OFF |
|   |                         | 2             | R410A                                          | -   | -    | OFF      | ON       | OFF   | OFF |
|   |                         | 3             | R134A                                          | -   | -    | ON       | ON       | OFF   | OFF |
|   |                         | 4             | R744 (CO <sub>2</sub> )                        | -   | -    | OFF      | OFF      | OFF   | ON  |
|   |                         | 5             | R407C                                          | -   | -    | ON       | OFF      | OFF   | ON  |
|   | Select<br>refrigerant   | 6             | R427A                                          | -   | -    | OFF      | ON       | ON    | ON  |
|   |                         | 7             | R507A                                          | -   | -    | ON       | ON       | ON    | OFF |
| b |                         | 8             | R717                                           | -   | -    | OFF      | OFF      | OFF   | ON  |
|   |                         | 9             | Reserved                                       | -   | -    | ON       | OFF      | OFF   | ON  |
|   |                         | 10            | R407A                                          | -   | -    | OFF      | ON       | OFF   | ON  |
|   |                         | 11            | R448A                                          | -   | -    | ON       | ON       | OFF   | ON  |
|   |                         | 12            | R449A                                          | -   | -    | OFF      | OFF      | ON    | ON  |
|   |                         | 13            | R450A                                          | -   | -    | ON       | OFF      | ON    | ON  |
|   |                         | 14            | R513A                                          | -   | -    | OFF      | ON       | ON    | ON  |
|   |                         | 15            | Set by parameter <b>dE20</b><br>R404A default  | -   | -    | ON       | ON       | ON    | ON  |
|   |                         |               | Action                                         | 1   | 2    | 3        | 4        | 5     | 6   |
|   | Upload/Download         | -             | Upload from<br><b>V910</b> to <b>MFK 100</b>   | ON  | OFF  | -        | -        | -     | -   |
| а | parameters from MFK 100 | -             | Download from<br><b>MFK 100</b> to <b>V910</b> | OFF | ON   | -        | -        | -     | -   |

Tab. 29 DIP switch

# **A** DANGER

#### POTENTIAL FOR EXPLOSION AND FIRE

Do not use this device with applications that use R290 inflammable refrigerant.

Failure to follow these instructions will result in death or serious injury.

#### 8 - FUNCTIONING

#### 8.1 - Introduction

V910 V3 is a stepper driver for electronic expansion valves that regulates the minimum overheating value at the evaporator output.

Refer to (Fig. 15).

The control value is the percentage of valve opening which is translated into a percentage of enabling of the output valve according to the following parameters:

- dE10 Maximum valve opening percentage is the maximum opening of the valve
- dE14 Minimum valve useful opening percentage is the minimum useful valve opening
- dE15 Maximum valve useful opening percentage is the maximum useful valve
- If the regulator controls an output of more than or equal to dE15, the actual output is equal to dE10.
- If dE15 > dE10, the function is ignored.
- If the regulator controls an output of less than or equal to dE14, the actual output is equal to 0.
- If the regulator controls an output of more than or equal to **dE10**, for more than the time set in **dE13** a maximum opening alarm **dA07** is generated to indicate a critical system situation such as insufficient load, undersizing, etc.
- To disable the signal, set dE13=0.

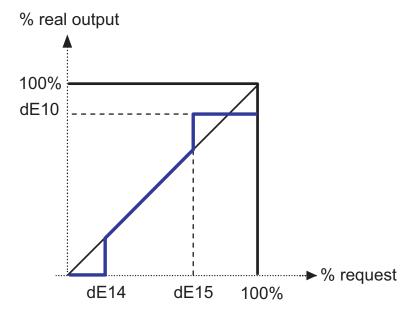



Fig. 15 Operating graph

## 8.2 - Saturation setting

V910 V3 calculates the real overheating value using the two analogue inputs, overheating dAi3 and saturation dAi1.

A PID controller modulates the valve opening so make the overheating reach the setpoint **dE32**. The algorithm is dynamic: the effective overheating value may not reach the set Setpoint or may temporarily fall below this value.

If this causes liquid to leak from the evaporator the Setpoint dE32 value must be increased.

\* Valid for **dE30=1**.

### 8.3 - Type of system dE21

The PID configuration parameters are loaded automatically by the device selecting the type of system defined by the parameter **dE21**.

## 8.4 - MOP (Maximum Operating Pressure)

MOP control has a threshold set by the pressure setpoint dE52.

Above this threshold for more than time **dE53**, a MOP alarm is triggered (refer to "11 - ALARMS" on page 104).

- MOP control can be enabled using parameter dE50.
- MOP control can be disabled when the device is switched on/after a defrost condition for an amount of time equal to **dE51**. This allows the pressure to drop below a given level when the system is switched back on.

#### 8.5 - ON/OFF control

The ON/OFF regulator is enabled by setting the parameter  $dE78 \neq 0$ .

| PAr. | Function                       | Value | Description                                                                                                             |
|------|--------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------|
| dE78 | ON/ OFF<br>Regulation Enabling | 02    | <ul> <li>0 = Disabled</li> <li>1 = ON/OFF regulation of hot mode</li> <li>2 = ON/OFF regulation of cold mode</li> </ul> |

Tab. 30 ON/ OFF Regulation Enabling

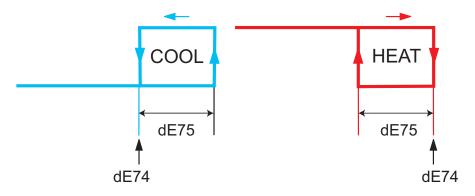



Fig. 16 Graphic operation ON/OFF

The regulation setpoint is set with the parameter **dE74** and the differential with **dE75**. Parameters **dE76** and **dE77** configure operation in the duty cycle in case of probe error.

| PAr. | Function                              | Value<br>dE76 | Value<br>dE77 | Regulator<br>status |
|------|---------------------------------------|---------------|---------------|---------------------|
| dE74 | Regulator setpoint ON/OFF             | 0             | 0             | OFF                 |
| dE75 | Regulator differential ON/OFF         | 0             | ≠0            | OFF                 |
| dE76 | ON time in the event of error probe.  | ≠0            | 0             | ON                  |
| dE77 | OFF time in the event of error probe. | ≠0            | ≠0            | Duty Cycle          |

Tab. 31 Regulator configuration ON/OFF

# 8.6 - CO2 Pressure regulation

Enabling of the pressure regulation for cascade systems ( $CO_2$ ) occurs by configuring the parameter **dE81**  $\neq$  0. The condensation pressure is regulated by a PID regulator:

| PAr. | Function                                                         | Value | Description                                                                                                                            |
|------|------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| dE81 | Enabling of PID pressure regulator (condensation)                | 04    | <ul> <li>0 = Disabled</li> <li>1 = Local regulator</li> <li>2 = Remote</li> <li>3 = Only PID pressure</li> <li>4 = Reserved</li> </ul> |
| dE_5 | Minimum overheating percentage -<br>forced mode*                 | 0100  | 0 (Default)                                                                                                                            |
| dE_6 | Activation time of minimum overheating percentage - forced mode* | 0255  | 0 (Default)                                                                                                                            |

Tab. 32 Enable Regulation pressure CO,

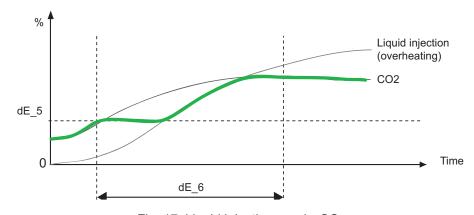



Fig. 17 Liquid injection graph- CO<sub>2</sub>

#### **PID** regulator

| PAr. | Function                                 | Description                                                               |
|------|------------------------------------------|---------------------------------------------------------------------------|
| dE82 | PID pressure regulator proportional band | The HEAT or COOL mode is set according to the sign (positive or negative) |
| dE83 | PID pressure integral gain               | -                                                                         |
| dE85 | Pressure PID cycle time                  | -                                                                         |
| dE89 | Pressure PID neutral zone                | -                                                                         |

Tab. 33 Enable Regulation pressure CO<sub>2</sub>

In cases of probe error (or value from remote unavailable), the PID regulator output value is pushed to dE16.

#### 8.7 - PID Control

The PID regulation acts without derivative component in such a way that the integral component adapts to the thermal-dynamic phenomena. The greater the integral gain **dE83** the greater the reactivity of the system itself.

The proportional component acts out-with the neutral zone in such a way as to speed up the regulation during transition.

The regulation speed of the PID is managed by parameters dE39, dE57, dE85.

| PAr. | Function                     |
|------|------------------------------|
| dE39 | Overheating PID cycle period |
| dE57 | MOP PID cycle period         |
| dE85 | Pressure PID cycle time      |

Tab. 34 PID control

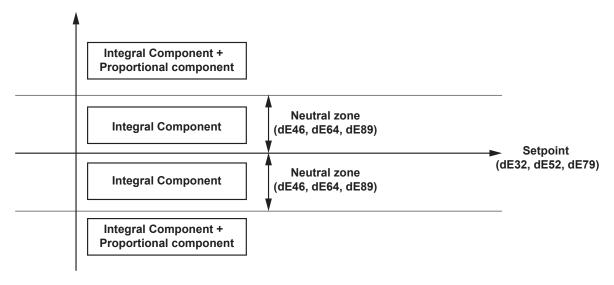



Fig. 18 Graphic operation PID regulator

#### 9 - APPLICATIONS

#### 9.1 - "Stand-alone"

The regulation can be controlled via:

- 1. digital inputs
- 2. serial connection.

The V910 V3 driver controls the electronic expansion valve and receives the commands defrost and valve EEV control from:

- 1. digital inputs (refer to "7.2 Digital inputs" on page 51)
- 2. RS485 serial.

Refer to (Fig. 19).

To set parameter dF02 refer to "9.1.1 - Control from digital inputs or serial port" on page 57.

#### 9.1.1 - Control from digital inputs or serial port

Suitably set parameter dF02:

- **dF02** = 0 digital input
- **dF02** ≠ 0 serial.

If the digital inputs are configured to ≠ 0, they always have priority over the serial command independently of parameter dF02.

Refer to "7 - I/O PHYSICAL CONFIGURATION" on page 47.

The selection of the Modbus protocol is set by the parameter dF00.

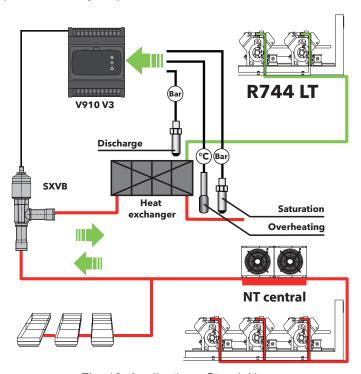



Fig. 19 Application - Stand-Alone

#### Regulation of digital inputs

| Value<br>dL40 - dl41 |                                |                                | Notes                                                                                                                                                                                                                                |
|----------------------|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ±1                   | ON                             | Enabling regulation            | Forcing valve opening to value:  dE11 - Valve actuation percentage after blackout  For a time:  dE35 - Valve opening freezing timer after OFF->ON                                                                                    |
|                      | OFF                            | Disabling regulation           | Valve closing (save in <b>dE11</b> of the current percentage)                                                                                                                                                                        |
| ±2                   | ON                             | Defrost in progress            | Valve closing The configured digital input ±1 is ignored until the end of defrost At the end of defrost the valve opening is forced to the value set by: dE12 - Valve actuation percentage after defrost (If ≠ 0) Otherwise see dE11 |
|                      | OFF                            | No defrost                     | -                                                                                                                                                                                                                                    |
| 12                   | ON                             | Alarm active                   | Valve closing                                                                                                                                                                                                                        |
| ±3                   | OFF Alarm not active           |                                | -                                                                                                                                                                                                                                    |
| ±4                   | ON                             | Eastery set regulation enabled | Control enabled with profile defined by dE22 - Type of system operating mode 1                                                                                                                                                       |
| ±4                   | Factory set regulation enabled |                                | Control enabled with profile defined by dE21 - Type of system operating mode 0                                                                                                                                                       |

Tab. 35 Regulation of digital inputs

| PAr. | Function           | Value | Description                                                                                                                                                                                                                                                                                                                                            |
|------|--------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dE20 | Select type of gas | 015   | • (0) r404=R404A<br>• (1) r22=r22<br>• (2) r410=R410a<br>• (3) r134=R134a<br>• (4) r744=R744 (C02)<br>• (5) r407=R407C<br>• (6) r427=R427A<br>• (7) r507=R507A<br>• (8) r717=R717<br>• (9) Reserved<br>• (10) r407A=R407A<br>• (11) r448=R448A<br>• (12) r449=R449A<br>• (13) r450=R450A<br>• (14) r513=R513A<br>• (15) = customisable (R404A default) |

Tab. 36 Select type of gas

The actuated percentage of the valve will be such as to maintain the low circuit condensation pressure setpoint at the desired value (**dE79**) while, in any event, preventing the overheating values at the heat exchanger outlet from dropping below the minimum overheating threshold (**dE32**) in order to prevent liquid from leaking out.

| PAr. | Function                    | Value    | Description                                                                      |
|------|-----------------------------|----------|----------------------------------------------------------------------------------|
| dE32 | Overheating lower threshold | -6001000 | Used to set the setpoint SP2 to regulate the overheating (objective overheating) |
| dE79 | Pressure setpoint           | -9999999 | -                                                                                |

#### **PID** regulator

These parameters must be set by qualified staff

| PAr. | Function                                 | Description     |
|------|------------------------------------------|-----------------|
| dE82 | PID pressure regulator proportional band | COOL mode <0    |
| dE83 | PID pressure integral gain               | -               |
| dE85 | Pressure PID cycle time                  | 0.2 (Suggested) |
| dE89 | Pressure PID neutral zone                | 0.5 (Suggested) |

The regulation will use the pressure value read by the sensor positioned at the heat exchanger outlet on the **LT** (**discharge pressure**) and the temperature valves (**overheating**) and pressure (**saturation**) at the heat exchanger outlet on the **NT** side.

| PAr. | Function                             | Value                 | Description |
|------|--------------------------------------|-----------------------|-------------|
| dL00 | Analogue input type dAi1 pressure    | 3 (420)               | -           |
| dL01 | Analogue input type dAi2 pressure    | 3 (420)               | -           |
| dL02 | Analogue input type dAi3 temperature | 1 (ntc)               | -           |
| dL03 | Analogue input dAi4 type             | 0 (diS)               | -           |
| dL30 | Analogue input dAi1 configuration    | 2 (saturation probe)  | Saturation  |
| dL31 | Analogue input dAi2 configuration    | 5 (discharge)         | Discharge   |
| dL32 | Analogue input dAi3 configuration    | 1 (overheating probe) | Overheating |
| dL33 | Analogue input dAi4 configuration    | 0                     | Not used    |

#### 9.1.3 - EWCM EO

V910 V3 can be directly connected to the serial RS485 of EWCM EO. In this mode the driver is driven directly by the EWCM EO.

In fact EWCM EO manages one driver per electronic expansion valve (EEV) by using serial RS485 EXP.

Below is a connection diagram between **EWCM EO** and **V910 V3** driver for stepper valves.

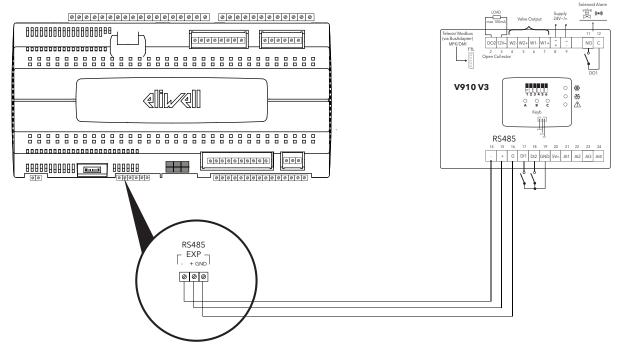



Fig. 20 Application - EWCM EO and Driver EEV V910 V3 Stepper

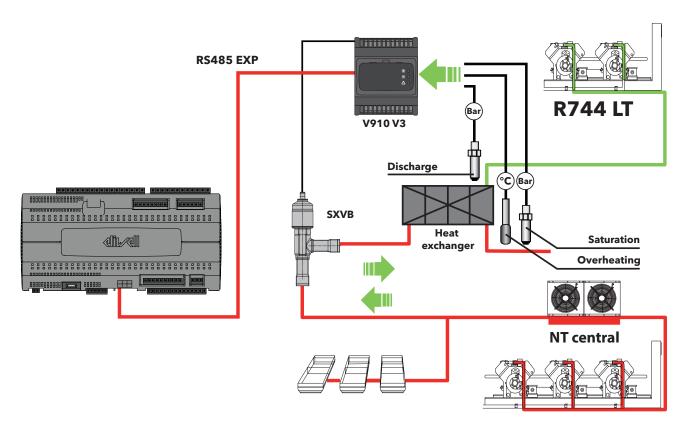



Fig. 21 Heat Exchanger

#### **Addressing and Protocol**

#### Modbus RTU 18200 baud, and, 1

| Parameter | Description                          | Value                                                                                  | Notes                                                                                                                                              |
|-----------|--------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| dF00      | COM0 protocol selection              | COM0 protocol selection  03  • 0 = Micronet • 1 = Modbus • 2 = Reserved • 3 = Reserved |                                                                                                                                                    |
| dF30      | Modbus protocol controller address   | 1255                                                                                   | -                                                                                                                                                  |
| dF31      | Modbus protocol controller baud rate | 07                                                                                     | • 0 =1200 baud<br>• 1 =2400 baud<br>• 2 =4800 baud<br>• 3 =9600 baud<br>• 4 =19200 baud<br>• 5 =38400 baud<br>• 6 =57600 baud<br>• 7 =115200 baud. |
| dF32      | Modbus protocol controller parity    | 02                                                                                     | • 0=NONE<br>• 1=EVEN (even)<br>• 2=ODD (uneven).                                                                                                   |

#### Type of activation

| Parameter | Description                                 | Value                                                                                                                                                                                                                                                                                                      |
|-----------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dF02      | Selection of V910 V3 activation type        | 3 (EWCM EO)                                                                                                                                                                                                                                                                                                |
| dE20      | Selection of type of refrigerant (HP plant) | • (0) r404=R404A • (1) r22=r22 • (2) r410=R410a • (3) r134=R134a • (4) r744=R744 (C02) • (5) r407=R407C • (6) r427=R427A • (7) r507=R507A • (8) r717=R717 • (9) Reserved • (10) r407A=R407A • (11) r448=R448A • (12) r449=R449A • (13) r450=R450A • (14) r513=R513A • (15) = customisable (R404A default). |

The actuated percentage of the valve will be such as to maintain the low circuit condensation pressure setpoint at the desired value (**dE79**) while, in any event, preventing the overheating values at the heat exchanger outlet from dropping below the minimum overheating threshold (**dE32**) in order to prevent liquid from leaking out.

| Parameter | Description                 |
|-----------|-----------------------------|
| dE32      | Overheating lower threshold |
| dE79      | Pressure set point          |

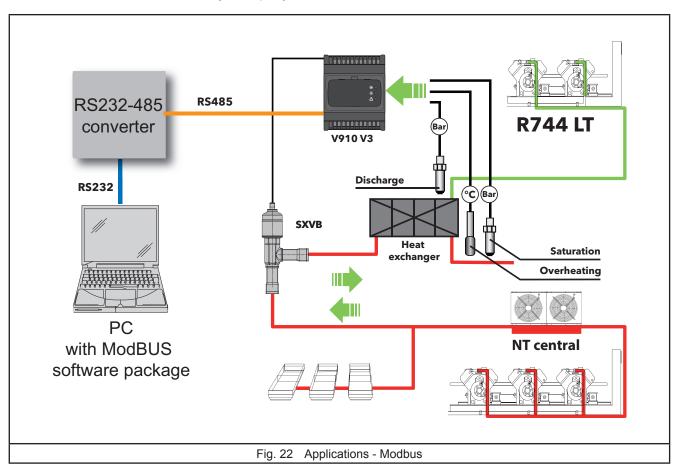
The condensation pressure is regulated by a PID regulator whose parameters are:

| Parameter | Description                                       | Value               |
|-----------|---------------------------------------------------|---------------------|
| dE81      | Enabling of PID pressure regulator (condensation) | 1 (local regulator) |

#### **PID** regulator

These parameters must be set by qualified staff.

| PAr. | Function                                 | Description     |
|------|------------------------------------------|-----------------|
| dE82 | PID pressure regulator proportional band | COOL mode <0    |
| dE83 | PID pressure integral gain               | -               |
| dE85 | Pressure PID cycle time                  | 0.2 (suggested) |
| dE89 | Pressure PID neutral zone                | 0.5 (suggested) |


The regulation will use the pressure value read by the sensor positioned at the heat exchanger outlet on the LT side (discharge pressure) and the temperature values (overheating) and pressure (saturation) at the heat exchanger outlet on the NT side.

#### **Configuration of sensors**

| Parameter | Description                          | value                 | Notes       |
|-----------|--------------------------------------|-----------------------|-------------|
| dL00      | Analogue input type dAi1 pressure    | 3 (420)               | -           |
| dL01      | Analogue input type dAi2 pressure    | 3 (420)               | -           |
| dL02      | Analogue input type dAi3 temperature | 1 (ntc)               | -           |
| dL03      | Analogue input dAi4 type             | 0 (diS)               | -           |
| dL30      | Analogue input dAi1 configuration    | 2 (saturation probe)  | saturation  |
| dL31      | Analogue input dAi2 configuration    | 5 (discharge)         | discharge   |
| dL32      | Analogue input dAi3 configuration    | 1 (overheating probe) | overheating |
| dL33      | Analogue input dAi4 configuration    | 0                     | not used    |

# 9.1.4 - Regulation via serial

The **V910 V3** driver can be driven by third-party devices, via Modbus.



#### **Addressing and Protocol**

| Parameter | Description                          | Value | Notes                                                                                                                                                    |
|-----------|--------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| dF00      | COM0 protocol selection              | 03    | • 0 = Micronet (Televis) • 1 = Modbus RTU • 2 = NOT USED • 3 = NOT USED.                                                                                 |
| dF30      | Modbus protocol controller address   | 1255  | -                                                                                                                                                        |
| dF31      | Modbus protocol controller baud rate | 07    | • 0 =1200 baud<br>• 1 =2400 baud;<br>• 2 =4800 baud;<br>• 3 =9600 baud;<br>• 4 =19200 baud;<br>• 5 =38400 baud;<br>• 6 =57600 baud;<br>• 7 =115200 baud. |
| dF32      | Modbus protocol controller parity    | 02    | • 0=NONE<br>• 1=EVEN (even)<br>• 2=ODD (uneven).                                                                                                         |

#### Modbus resources for checking the V910 V3 driver

| Variable           | Description                                                                                                                                                                                                                                                                        | ModBUS address | R/W | Notes                              |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------------------------------------|
| EEV_STTS           | EEV status bit 0: (0→OFF; 1→ON) bit 1:1→ Alarm ON bit 2: 1→ Defrost ON bit 37: → NOT USED bit 8: → Overheating probe error bit 9: → Saturation probe error bit 10: → PID probe (CO2) error bit 11: → Motor alarm bit 12: → External alarm bit 13: → MOP alarm bit 1415: → NOT USED | 33158          | R   | bit 1: → Alarm<br>bit 2: → Defrost |
| drE9               | valve opening percentage                                                                                                                                                                                                                                                           | 501            | R   | 0.1%                               |
| drE7               | Valve overheating                                                                                                                                                                                                                                                                  | 497            | R   | -                                  |
| Discharge Pressure | Discharge pressure BT used by V910 V3                                                                                                                                                                                                                                              | 495            | R   | 0.1 psi                            |

#### Type of activation

| Parameter | Description                                 | value                                                                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dF02      | Selection of <b>V910 V3</b> activation type | 1 (Serial)                                                                                                                                                                                                                                                                                                                                              |
| dE20      | Selection of type of refrigerant (HP plant) | • (0) r404=R404A<br>• (1) r22=r22<br>• (2) r410=R410a<br>• (3) r134=R134a<br>• (4) r744=R744 (C02)<br>• (5) r407=R407C<br>• (6) r427=R427A<br>• (7) r507=R507A<br>• (8) r717=R717<br>• (9) Reserved<br>• (10) r407A=R407A<br>• (11) r448=R448A<br>• (12) r449=R449A<br>• (13) r450=R450A<br>• (14) r513=R513A<br>• (15) = customisable (R404A default). |

The actuated percentage of the valve will be such as to maintain the low circuit condensation pressure setpoint at the desired value (dE79) while, in any event, preventing the overheating values at the heat exchanger outlet from dropping below the minimum overheating threshold (dE32) in order to prevent liquid from leaking out.

| Parameter | Description                 |  |
|-----------|-----------------------------|--|
| dE32      | Overheating lower threshold |  |
| dE79      | Pressure set point          |  |

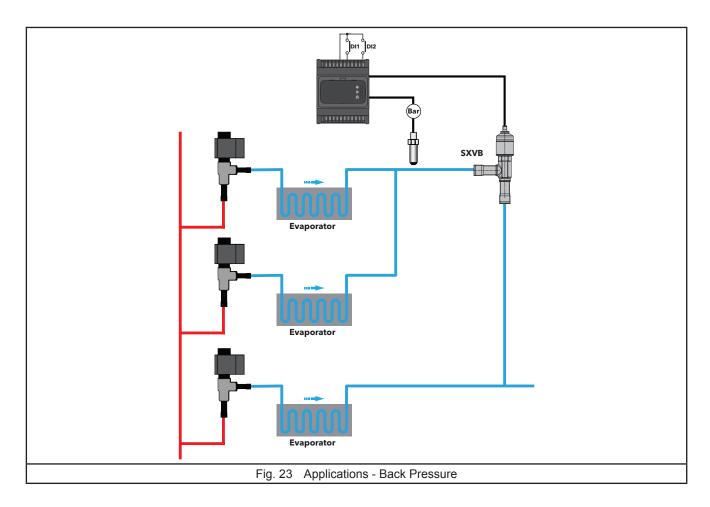
The condensation pressure is regulated by a PID regulator whose parameters are:

| Parameter | Description                                       | value               |
|-----------|---------------------------------------------------|---------------------|
| dE81      | Enabling of PID pressure regulator (condensation) | 1 (local regulator) |

#### **PID** regulator

These parameters must be set by qualified staff.

| PAr. | Function                                 | Description     |
|------|------------------------------------------|-----------------|
| dE82 | PID pressure regulator proportional band | COOL mode < 0   |
| dE83 | PID pressure integral gain               | -               |
| dE85 | Pressure PID cycle time                  | 0.5 (Suggested) |
| dE89 | Pressure PID neutral zone                | 0.2 (Suggested) |


The regulation will use the pressure value read by the sensor positioned at the heat exchanger outlet on the LT side (discharge pressure) and the temperature values (overheating) and pressure (saturation) at the heat exchanger outlet on the NT side.

#### **Configuration of sensors:**

| Parameter | Description                          | value                 | Notes       |
|-----------|--------------------------------------|-----------------------|-------------|
| dL00      | Analogue input type dAi1 pressure    | 3 (420)               | -           |
| dL01      | Analogue input type dAi2 pressure    | 3 (420)               | -           |
| dL02      | Analogue input type dAi3 temperature | 1 (ntc)               | -           |
| dL03      | Analogue input dAi4 type             | 0 (diS)               | -           |
| dL30      | Analogue input dAi1 configuration    | 2 (saturation probe)  | saturation  |
| dL31      | Analogue input dAi2 configuration    | 5 (discharge)         | discharge   |
| dL32      | Analogue input dAi3 configuration    | 1 (overheating probe) | overheating |
| dL33      | Analogue input dAi4 configuration    | 0                     | not used    |

# 9.2 - Back pressure

Mode Back-pressure can be used in the applications in which it is required to keep <u>a constant pressure</u> of the refrigerant in the refrigeration circuit.



#### Type of activation

#### **Digital input**

| Parameter | Parameter         Description         Value           dF02         Selection of V910 V3 activation type         0 (digital input) |                            |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| dF02      |                                                                                                                                   |                            |
| dL40      | Digital input ddl1 configuration                                                                                                  | 1 (ON/OFF)                 |
| dE20      | Selection of type of refrigerant (HP plant)                                                                                       | Select desired refrigerant |

The percentage actuated by the valve will be such that it can maintain the discharge pressure at the desired value (dE79).

| Parameter | Description        |  |
|-----------|--------------------|--|
| dE79      | Pressure set point |  |

The condensation pressure is regulated by a PID regulator whose parameters are:

| Parameter | Description                                       | Value                       |
|-----------|---------------------------------------------------|-----------------------------|
| dE81      | Enabling of PID pressure regulator (condensation) | 3 (only pressure regulator) |

#### **PID** regulator

These parameters must be set by qualified staff.

| Parameter |                            |                 |
|-----------|----------------------------|-----------------|
| dE82      |                            |                 |
| dE83      | PID pressure integral gain | -               |
| dE85      | Pressure PID cycle time    | 0.2 (Suggested) |
| dE89      | Pressure PID neutral zone  | 0.1 (Suggested) |

#### Valve opening

| Parameter | Description                             | Value |
|-----------|-----------------------------------------|-------|
| dE14      | Minimum valve useful opening percentage | 1%    |

The regulation will use the pressure value read by the sensor positioned upstream from the valve.

**NOTE**: Regulation in PSI is recommended.

#### **Configuration of sensors**

| Parameter | Description                          | Value        | Notes                                        |
|-----------|--------------------------------------|--------------|----------------------------------------------|
| dL00      | Analogue input type dAi1 pressure    | 3 (420)      | -                                            |
| dL01      | Analogue input type dAi2 pressure    | 0 (diS)      | -                                            |
| dL02      | Analogue input type dAi3 temperature | 0 (diS)      | -                                            |
| dL03      | Analogue input dAi4 type             | 0 (diS)      | -                                            |
| dL30      | Analogue input dAi1 configuration    | 5 (*)        | (*) suction<br>(CO <sub>2</sub> : discharge) |
| dL31      | Analogue input dAi2 configuration    | 0 (disabled) | not used                                     |
| dL32      | Analogue input dAi3 configuration    | 0 (disabled) | not used                                     |
| dL33      | Analogue input dAi4 configuration    | 0 (disabled) | not used                                     |

# 9.3 - Hot gas by-pass

Regulation can be used to control the refrigerator capacity.

If the system is working with a low thermal load, inject hot gas in the evaporator to increase its load.

Only the pressure probe positioned on the compressor aspiration line is regulated.

As the pressure decreases, the regulator increases the amount of hot gas injected.




Fig. 24 Applications - Hot gas by-pass

#### Type of activation

| Parameter | Description                          | value             |
|-----------|--------------------------------------|-------------------|
| dF02      | Selection of V910 V3 activation type | 0 (Digital Input) |
| dL40      | Digital input ddl1 configuration     | 1 (ON/OFF)        |

The percentage actuated by the valve will be such that it can maintain the suction pressure at the desired value (dE79).

| Parameter | Description        |  |
|-----------|--------------------|--|
| dE79      | Pressure set point |  |

The condensation pressure is regulated by a PID regulator whose parameters are:

| Parameter | Description                                       | value                       |
|-----------|---------------------------------------------------|-----------------------------|
| dE81      | Enabling of PID pressure regulator (condensation) | 3 (only pressure regulator) |

#### **PID** regulator

These parameters must be set by qualified staff.

| Parameter | Description                              | value           |  |
|-----------|------------------------------------------|-----------------|--|
| dE82      | PID pressure regulator proportional band | COOL mode <0    |  |
| dE83      | PID pressure integral gain               | -               |  |
| dE85      | Pressure PID cycle time                  | 0.2 (Suggested) |  |
| dE89      | Pressure PID neutral zone                | 0.1 (Suggested) |  |

The regulation will use the pressure value read by the sensor positioned upstream from the valve.

## **Configuration of sensors**

| Parameter | Description                       | value        | Notes                                        |
|-----------|-----------------------------------|--------------|----------------------------------------------|
| dL00      | Analogue input type dAi1 pressure | 3 (420)      |                                              |
| dL01      | Analogue input dAi2 type          | 0 (diS)      |                                              |
| dL02      | Analogue input dAi3 type          | 0 (diS)      |                                              |
| dL03      | Analogue input dAi4 type          | 0 (diS)      |                                              |
| dL30      | Analogue input dAi1 configuration | 5 (*)        | (*) suction<br>(CO <sub>2</sub> : discharge) |
| dL31      | Analogue input dAi2 configuration | 0 (disabled) | not used                                     |
| dL32      | Analogue input dAi3 configuration | 0 (disabled) | not used                                     |
| dL33      | Analogue input dAi4 configuration | 0 (disabled) | not used                                     |

# 9.4 - Protection of high condensation temperature

The **V910 V3** driver can modulate the injection of liquids, even while monitoring the compressor discharge pressure (or temperature) in a way that prevents the compressor from working in a dangerous area.

If the regulator detects an increase in compressor discharge pressure (or temperature), it will limit the amount of refrigerant introduced into the evaporator in such a way as to reduce the compressor load.

#### 9.4.1 - Pressure protection

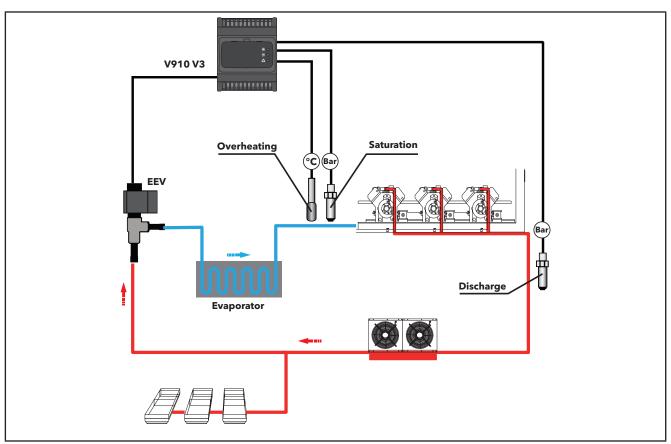



Fig. 25 Applications - Pressure Protection Evaporator

#### Type of activation

#### **Digital input**

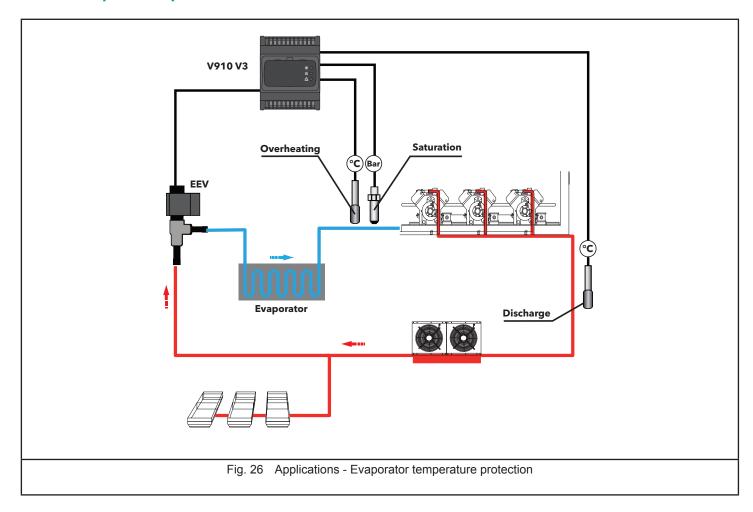
| Parameter | Description                                 | value                      |
|-----------|---------------------------------------------|----------------------------|
| dF02      | Selection of V910 V3 activation type        | 0 (digital input)          |
| dL40      | Digital input ddl1 configuration            | 1 (ON/OFF)                 |
| dE20      | Selection of type of refrigerant (HP plant) | Select desired refrigerant |

The percentage actuated by the valve will be such that it keeps the overheating at the evaporator outlet at the desired value (dE32), if the discharge pressure is greater than the threshold set by the pressure setpoint dE79 the regulator will further decrease the valve opening.

| Parameter | Description                 |  |
|-----------|-----------------------------|--|
| dE32      | Overheating lower threshold |  |
| dE79      | Pressure set point          |  |

The condensation pressure is regulated by a PID regulator whose parameters are:

| Parameter | Description                                       | Value               |
|-----------|---------------------------------------------------|---------------------|
| dE81      | Enabling of PID pressure regulator (condensation) | 1 (local regulator) |


## **PID** regulator

These parameters must be set by qualified staff.

## **Configuration of sensors**

| Parameter | Description                          | Value                 | Notes       |
|-----------|--------------------------------------|-----------------------|-------------|
| dL00      | Analogue input type dAi1 pressure    | 3 (420)               |             |
| dL01      | Analogue input type dAi2 pressure    | 3 (420)               |             |
| dL02      | Analogue input type dAi3 temperature | 1 (ntc)               |             |
| dL03      | Analogue input dAi4 type             | 0 (diS)               |             |
| dL30      | Analogue input dAi1 configuration    | 2 (saturation probe)  | saturation  |
| dL31      | Analogue input dAi2 configuration    | 5 (discharge)         | discharge   |
| dL32      | Analogue input dAi3 configuration    | 1 (overheating probe) | overheating |
| dL33      | Analogue input dAi4 configuration    | 0                     | not used    |

# 9.4.2 - Temperature protection



## Type of activation

# **Digital input**

| Parameter | Description                                 | Value                                                                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dF02      | Selection of V910 V3 activation type        | 0 (digital input)                                                                                                                                                                                                                                                                                                                                       |
| dL40      | Configuration of digital input ddl1 (D1)    | 1 (ON/OFF)                                                                                                                                                                                                                                                                                                                                              |
| dE20      | Selection of type of refrigerant (HP plant) | • (0) r404=R404A<br>• (1) r22=r22<br>• (2) r410=R410a<br>• (3) r134=R134a<br>• (4) r744=R744 (C02)<br>• (5) r407=R407C<br>• (6) r427=R427A<br>• (7) r507=R507A<br>• (8) r717=R717<br>• (9) Reserved<br>• (10) r407A=R407A<br>• (11) r448=R448A<br>• (12) r449=R449A<br>• (13) r450=R450A<br>• (14) r513=R513A<br>• (15) = customisable (R404A default). |

The percentage actuated by the valve will be such that it keeps the overheating at the evaporator outlet at the desired value (dE32), if the discharge temperature is greater than the threshold set by the setpoint dE79 the regulator will further decrease the valve opening.

| Parameter | Description                 |  |
|-----------|-----------------------------|--|
| dE32      | Overheating lower threshold |  |
| dE79      | Pressure set point          |  |

The condensation pressure is regulated by a PID regulator whose parameters are:

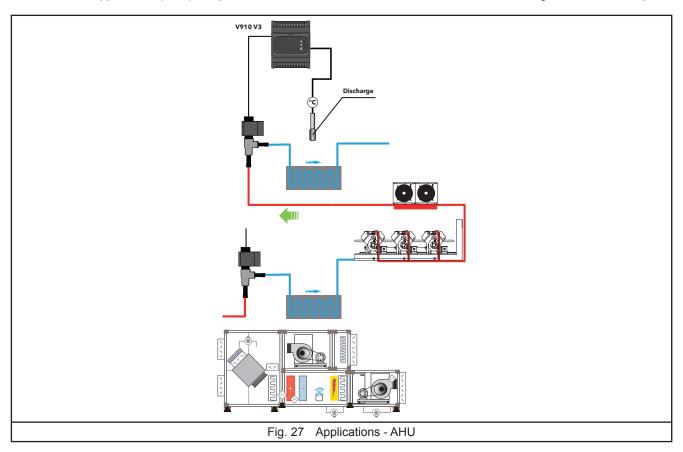
#### **Enable**

| Parameter | Description                                       | Value               |
|-----------|---------------------------------------------------|---------------------|
| dE81      | Enabling of PID pressure regulator (condensation) | 1 (local regulator) |

### **PID** regulator

These parameters must be set by qualified staff

| Parameter | Description                              | Value           |
|-----------|------------------------------------------|-----------------|
| dE82      | PID pressure regulator proportional band | HEAT mode > 0   |
| dE83      | PID pressure integral gain               |                 |
| dE85      | Pressure PID cycle time                  | 0.2 (Suggested) |
| dE89      | Pressure PID neutral zone                | 0.1 (Suggested) |


### **Configuration of sensors**

| Parameter | Description                                             | Value                | Notes       |
|-----------|---------------------------------------------------------|----------------------|-------------|
| dL00      | Analogue input dAi1 type                                | 3 (420)              | saturation  |
| dL01      | Analogue input dAi2 type                                | 0 (dis)              | not used    |
| dL02      | Analogue input dAi3 type                                | 1 (ntc)              | overheating |
| dL03      | Analogue input dAi4 type                                | 1 (ntc)              | discharge   |
| dL30      | Analogue input dAi1 configuration                       | 2 (saturation probe) | saturation  |
| dL31      | .31 Analogue input dAi2 configuration 0                 |                      | not used    |
| dL32      | Analogue input dAi3 configuration 1 (overheating probe) |                      | overheating |
| dL33      | Analogue input dAi4 configuration 5 (discharge          |                      | discharge   |

# 9.5 - AHU Post-heating

It is possible to modulate the valve opening as a function of a temperature.

In air treatment applications (AHU), it is possible to use the condensation heat to heat the air according to the desired set point.



### Type of activation

### **Digital input**

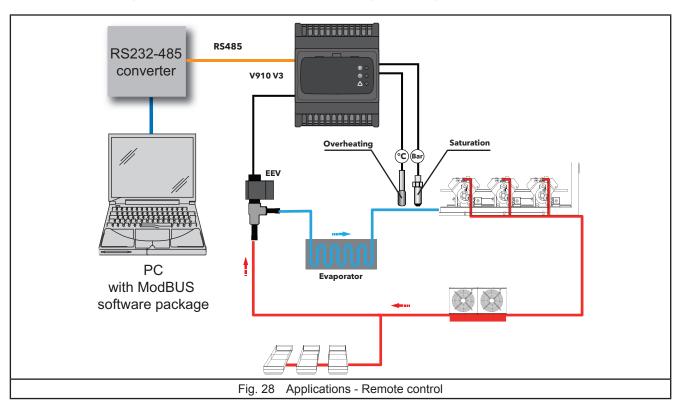
| Parameter | Description                                 | Value                                                                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dF02      | Selection of V910 V3 activation type        | 0 (digital input)                                                                                                                                                                                                                                                                                                                                       |
| dL40      | Digital input ddl1 configuration            | 1 (ON/OFF)                                                                                                                                                                                                                                                                                                                                              |
| dE20      | Selection of type of refrigerant (HP plant) | • (0) r404=R404A<br>• (1) r22=r22<br>• (2) r410=R410a<br>• (3) r134=R134a<br>• (4) r744=R744 (C02)<br>• (5) r407=R407C<br>• (6) r427=R427A<br>• (7) r507=R507A<br>• (8) r717=R717<br>• (9) Reserved<br>• (10) r407A=R407A<br>• (11) r448=R448A<br>• (12) r449=R449A<br>• (13) r450=R450A<br>• (14) r513=R513A<br>• (15) = customisable (R404A default). |

The percentage actuated by the valve will be such that it can maintain the discharge temperature at the desired value (**dE79**). The condensation pressure is regulated by a PID regulator whose parameters are:

| Parameter | Description                                       | Value                       |
|-----------|---------------------------------------------------|-----------------------------|
| dE81      | Enabling of PID pressure regulator (condensation) | 3 (only pressure regulator) |

### **PID** regulator

These parameters must be set by qualified staff.


| Parameter                                                   | Description                | Value           |
|-------------------------------------------------------------|----------------------------|-----------------|
| dE82 PID pressure regulator proportional band HEAT mode > 0 |                            | HEAT mode > 0   |
| dE83                                                        | PID pressure integral gain | -               |
| dE85                                                        | Pressure PID cycle time    | 0.2 (Suggested) |
| dE89                                                        | Pressure PID neutral zone  | 0.1 (Suggested) |

### **Configuration of sensors**

| Parameter | Description                          | Value         | Notes     |
|-----------|--------------------------------------|---------------|-----------|
| dL00      | Analogue input dAi1 type             | 0 (dis)       |           |
| dL01      | Analogue input dAi2 type             | 0 (dis)       |           |
| dL02      | Analogue input type dAi3 temperature | 1 (ntc)       |           |
| dL03      | Analogue input dAi4 type             | 0 (dis)       |           |
| dL30      | Analogue input dAi1 configuration 0  |               | not used  |
| dL31      | Analogue input dAi2 configuration 0  |               | not used  |
| dL32      | Analogue input dAi3 configuration    | 5 (discharge) | discharge |
| dL33      | Analogue input dAi4 configuration    | 0             | not used  |

# 9.6 - Remote control of capacity

It is possible to remotely limit the upper threshold of the heat capacity supplied by the expansion valve.



Modbus resources for checking the  ${\bf V910}~{\bf V3}$  driver:

| Variable             | Description                                                                                       | Modbus address | R/W | Notes                              |
|----------------------|---------------------------------------------------------------------------------------------------|----------------|-----|------------------------------------|
| EEVStatus            | EEV status bit 0: 00→ (0→0FF; 1→0N) bit 1: 01→ Alarm ON bit 2: 10→ Defrost ON bit 3: 11→ NOT USED | 33158          | R   | bit 1: → Alarm<br>bit 2: → Defrost |
| EEVOutPerc           | Valve opening percentage                                                                          | 501            | R   | 0.1%                               |
| EEVSuperHeatingTemp  | Super Heating Temperature                                                                         | 497            | R   |                                    |
| EEV_Remote_Threshold | Maximum valve opening percentage                                                                  | 599            | RW  | 0.1%                               |

### **Addressing and Protocol**

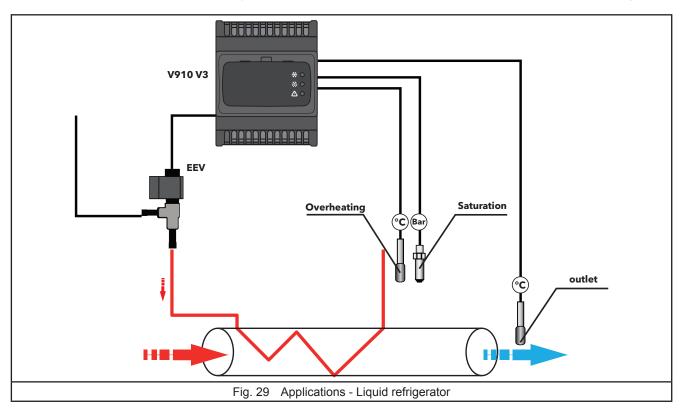
| Parameter | Description                          | Value | Notes                                                                                                                                               |
|-----------|--------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| dF00      | COM0 protocol selection              | 1     | <ul> <li>0 = Micronet (Televis)</li> <li>1 = Modbus RTU</li> <li>2 = NOT USED</li> <li>3 = NOT USED.</li> </ul>                                     |
| dF30      | Modbus protocol controller address   | 1     | 1 255                                                                                                                                               |
| dF31      | Modbus protocol controller baud rate | 4     | • 0= 1200 baud<br>• 1= 2400 baud<br>• 2= 4800 baud<br>• 3= 9600 baud<br>• 4 = 19200 baud<br>• 5= 38400 baud<br>• 6= 57600 baud<br>• 7= 115200 baud. |
| dF32      | Modbus protocol controller parity    | 1     | • 0 = NONE<br>• 1 = EVEN (even);<br>• 2 = ODD (uneven).                                                                                             |

### Type of activation

### **Digital input**

| Parameter | Description                                 | Value                                                                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dF02      | Selection of <b>V910 V3</b> activation type | 0 (digital input)                                                                                                                                                                                                                                                                                                                                       |
| dL40      | Digital input ddl1 configuration            | 1 (ON/OFF)                                                                                                                                                                                                                                                                                                                                              |
| dE20      | Selection of type of refrigerant (HP plant) | • (0) r404=R404A<br>• (1) r22=r22<br>• (2) r410=R410a<br>• (3) r134=R134a<br>• (4) r744=R744 (C02)<br>• (5) r407=R407C<br>• (6) r427=R427A<br>• (7) r507=R507A<br>• (8) r717=R717<br>• (9) Reserved<br>• (10) r407A=R407A<br>• (11) r448=R448A<br>• (12) r449=R449A<br>• (13) r450=R450A<br>• (14) r513=R513A<br>• (15) = customisable (R404A default). |

The percentage actuated by the valve will be sufficient for maintaining the overheating of the evaporator outlet at the desired value (dE32) when the required value is greater than the value set by remote (EEV\_Remote\_Threshold) the valve will be actuated at the value set by the threshold.


| Parameter | Description                                       | Value           |
|-----------|---------------------------------------------------|-----------------|
| dE81      | Enabling of PID pressure regulator (condensation) | 2 (% by remote) |

### **Configuration of sensors**

| Parameter | Description                         | Value                 | Notes       |
|-----------|-------------------------------------|-----------------------|-------------|
| dL00      | Analogue input dAi1 type            | 3 (420)               |             |
| dL01      | Analogue input dAi2 type            | 0                     |             |
| dL02      | Analogue input dAi3 type            | 1 (ntc)               |             |
| dL03      | Analogue input type dAi4 (Not Used) | 0 (diS)               |             |
| dL30      | Analogue input dAi1 configuration   | 2 (saturation probe)  | saturation  |
| dL31      | Analogue input dAi2 configuration   | 0                     | not used    |
| dL32      | Analogue input dAi3 configuration   | 1 (overheating probe) | overheating |
| dL33      | Analogue input dAi4 configuration   | 0                     | not used    |

# 9.7 Liquid refrigerator

The **V910 V3** driver can modulate the liquid injection in order to obtain a preset temperature of the cooled liquid (liquid refrigerator).



Type of activation

### **Digital input**

| Parameter | Description                                 | Value                      |  |
|-----------|---------------------------------------------|----------------------------|--|
| dF02      | Selection of V910 V3 activation type        | 0 (digital input)          |  |
| dL40      | Digital input ddl1 configuration            | 1 (ON/OFF)                 |  |
| dE20      | Selection of type of refrigerant (HP plant) | Select desired refrigerant |  |

The percentage actuated by the valve will be such that it can maintain the saturation temperature at the desired set point (dE79) and modulate the liquid injection in such a way as to maintain the overheating at the evaporator outlet no lower than dE32.

#### **Enable**

| Parameter | Description                                       | value               |
|-----------|---------------------------------------------------|---------------------|
| dE81      | Enabling of PID pressure regulator (condensation) | 1 (local regulator) |

### **Configuration of sensors**

| Parameter | Description                       | value                 | Notes       |
|-----------|-----------------------------------|-----------------------|-------------|
| dL00      | Analogue input dAi1 type          | 3 (420)               |             |
| dL01      | Analogue input dAi2 type          | 0                     |             |
| dL02      | Analogue input dAi3 type          | 1 (ntc)               |             |
| dL03      | Analogue input dAi4 type          | 1 (ntc)               |             |
| dL30      | Analogue input dAi1 configuration | 2 (saturation probe)  | saturation  |
| dL31      | Analogue input dAi2 configuration | 0                     | not used    |
| dL32      | Analogue input dAi3 configuration | 1 (overheating probe) | overheating |
| dL33      | Analogue input dAi4 configuration | 5 (discharge probe)   | outlet      |

# 9.8 - Refrigerated counter with ON/OFF regulation

In this mode the regulator is able to activate/deactivate the injection of the liquid into the evaporator as a function of the temperature of the counter to be tested (and possibly an optional relay switch).

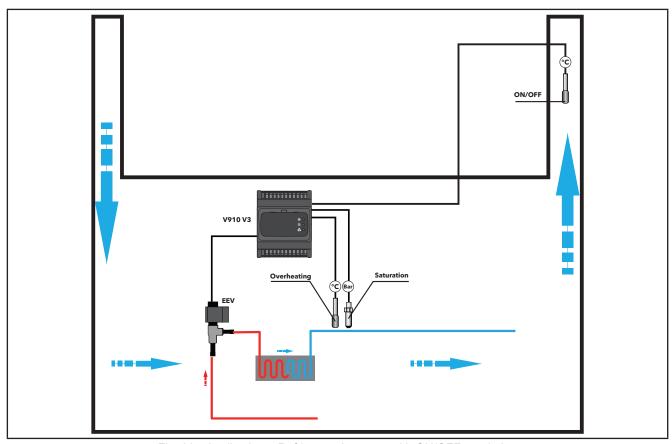



Fig. 30 Applications -Refrigerated counter with ON/OFF regulation

### Type of activation

| Parameter | Description                                 | Value                                                                                                                                                                                                                                                                                                                                                   |
|-----------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dF02      | Selection of V910 V3 activation type        | 2 (ON/OFF Regulator)                                                                                                                                                                                                                                                                                                                                    |
| dE20      | Selection of type of refrigerant (HP plant) | • (0) r404=R404A<br>• (1) r22=r22<br>• (2) r410=R410a<br>• (3) r134=R134a<br>• (4) r744=R744 (C02)<br>• (5) r407=R407C<br>• (6) r427=R427A<br>• (7) r507=R507A<br>• (8) r717=R717<br>• (9) Reserved<br>• (10) r407A=R407A<br>• (11) r448=R448A<br>• (12) r449=R449A<br>• (13) r450=R450A<br>• (14) r513=R513A<br>• (15) = customisable (R404A default). |

The percentage actuated by the valve will be such that it keeps the overheating at the evaporator outlet no lower than dE32.

#### **Enable**

This regulator is enabled: setting the parameter **dE78** to the desired COOL or HEAT mode.

The regulation setpoint is set with the parameter **dE74** and the differential with **dE75**.

Parameters dE76 and dE77 configure operation in the duty cycle in case of probe error.

| Parameter | Description                                        | Value                   |  |
|-----------|----------------------------------------------------|-------------------------|--|
| dE74      | Regulator setpoint ON/OFF                          | Set desired temperature |  |
| dE75      | Regulator differential ON/OFF                      | value to set            |  |
| dE76      | ON time in cases where the ON/OFF probe is faulty  | value to set            |  |
| dE77      | OFF time in cases where the ON/OFF probe is faulty | value to set            |  |
| dE78      | Regulation mode (dis/HEAT/COOL)                    | 2 (COOL)                |  |

#### **PID Regulator disabled**

| Parameter | Description                                       | Value        |  |
|-----------|---------------------------------------------------|--------------|--|
| dE81      | Enabling of PID pressure regulator (condensation) | 0 (disabled) |  |

#### **Configuration of sensors**

| Parameter | Description                       | Value                 | Notes          |
|-----------|-----------------------------------|-----------------------|----------------|
| dL00      | Analogue input dAi1 type          | 3 (420)               |                |
| dL01      | Analogue input dAi2 type          | 0                     |                |
| dL02      | Analogue input dAi3 type          | 1 (ntc)               |                |
| dL03      | Analogue input dAi4 type          | 1 (ntc)               |                |
| dL30      | Analogue input dAi1 configuration | 2 (saturation probe)  | saturation     |
| dL31      | Analogue input dAi2 configuration | 0                     | not used       |
| dL32      | Analogue input dAi3 configuration | 1 (overheating probe) | overheating    |
| dL33      | Analogue input dAi4 configuration | 6 (regulator ON/OFF)  | ON/OFF         |
| dL40      | Digital input ddl1 configuration  | 0                     | not configured |

# 9.9 - Liquid injection regulator with auxiliary thermostat in temperature

The liquid control regulator and auxiliary regulator can regulate independently

The ON/OFF regulator, on driver **V910 V3**, can in fact be used independently of the liquid control for auxiliary regulations.

### Type of activation

### **Digital input**

| Parameter | Description                                 | Value                      |  |
|-----------|---------------------------------------------|----------------------------|--|
| dF02      | Selection of V910 V3 activation type        | 0 (digital input)          |  |
| dL40      | Digital input ddl1 configuration            | 1 (ON/OFF)                 |  |
| dE20      | Selection of type of refrigerant (HP plant) | Select desired refrigerant |  |

The percentage actuated by the valve will be such that it keeps the overheating at the evaporator outlet no lower than dE32.

#### **Enable**

This regulator is enabled: setting the parameter **dE78** to the desired COOL or HEAT mode.

The regulation setpoint is set with the parameter  ${\it dE74}$  and the differential with  ${\it dE75}$ .

Parameters **dE76** and **dE77** configure operation in the duty cycle in case of probe error.

| Parameter | Description                                        | Value                   |  |
|-----------|----------------------------------------------------|-------------------------|--|
| dE74      | Regulator setpoint ON/OFF                          | Set desired temperature |  |
| dE75      | Regulator differential ON/OFF                      | -                       |  |
| dE76      | ON time in cases where the ON/OFF probe is faulty  | -                       |  |
| dE77      | OFF time in cases where the ON/OFF probe is faulty | -                       |  |
| dE78      | Regulation mode (dis/HEAT/COOL)                    | 1 (HEAT) - 2 (COOL)     |  |

### PID Regulator disabled

| Parameter | Description                                       | Value        |  |
|-----------|---------------------------------------------------|--------------|--|
| dE81      | Enabling of PID pressure regulator (condensation) | 0 (disabled) |  |

### **Configuration of sensors**

| Parameter | Description                       | Value                 | Notes       |
|-----------|-----------------------------------|-----------------------|-------------|
| dL00      | Analogue input dAi1 type          | 3 (420)               | -           |
| dL01      | Analogue input dAi2 type          | 0                     | -           |
| dL02      | Analogue input dAi3 type          | 1 (ntc)               | -           |
| dL03      | Analogue input dAi4 type          | 1 (ntc)               | -           |
| dL30      | Analogue input dAi1 configuration | 2 (saturation probe)  | saturation  |
| dL31      | Analogue input dAi2 configuration | 0                     | not used    |
| dL32      | Analogue input dAi3 configuration | 1 (overheating probe) | overheating |
| dL33      | Analogue input dAi4 configuration | 6 (regulator ON/OFF)  | ON/OFF      |

### **Digital outputs**

| Parameter | Description                                         | Value                | Notes |
|-----------|-----------------------------------------------------|----------------------|-------|
| dL90      | Digital output ddO1 configuration                   | 3 (ON/OFF Regulator) |       |
| dL91      | Digital output ddO2 configuration (Open Collector). | 3 (ON/OFF Regulator) |       |

### 10 - PARAMETERS (PAr)

The parameters can be set to wholly configure the **V910 V3**.

The parameters can be modified via:

- MFK 100 / UNICARD (MFK)
- keys on the SKP 10 terminal
- · Personal Computer.

The following sections provide a detailed analysis of each parameter, divided into categories (folders).

Each folder is designated with a label showing two figures (example: dF, UI, etc.).

| Folder label | Meaning of acronym (label)    | Parameters             |  |  |  |  |
|--------------|-------------------------------|------------------------|--|--|--|--|
| dL           | driver Locator configuration  | I/O configuration      |  |  |  |  |
| dF           | driver protocol configuration | Protocol configuration |  |  |  |  |
| dE           | driver valve configuration    | Valve configuration    |  |  |  |  |
| Ui           | User interface                | User interface         |  |  |  |  |

Tab. 37 Parameters (PAr)

Unless otherwise indicated, the parameter is always visible and modifiable, unless customized settings have been configured via serial.

Both parameters and folder visibility can be controlled (See Folder table).

If folder visibility is modified, the new setting will apply to all parameters in the folder.

### 10.1 - Levels of visibility

There are 4 levels of visibility that can be set by assigning appropriate values to each parameter in the folder exclusively via serial, software (DeviceManager or other software communication) or programming key.

The visibility levels are:

- value 3 = parameter or folder always visible;
- value 2 = user level; these parameters can only be viewed by entering the installer password
   (see parameter Ui28) (all parameters specified as always visible and parameters visible at the installer level
   will be visible)
- value 1 = user level; these parameters can only be viewed by entering the installer password (See parameter **Ui27**) (all parameters specified as always visible and parameters visible at the installer level will be visible)
- value 0 = parameter or folder NOT visible.

Parameters and/or folders with a level of visibility other than 3 (password-protected) will be visible only if the correct password is entered (installer or manufacturer) following this procedure.

Parameters and/or folders with a level of visibility = 3 are always visible even without a password: in this case, the following procedure is not necessary.

### 10.2 - Parameters / visibility table, folder visibility table and client table

The tables below list all information required to read, write and decode all accessible resources in the device. There are 3 tables:

- the parameter table lists all controller configuration parameters saved in the non-volatile memory, including visibility
- the folder table lists all parameter folder visibility details
- the client table includes all I/O and alarm status resources available in the volatile memory of the instrument.

#### Description of the columns:

The description of the columns contains an explanatory key of the parameters table.

| FOLDER                | Indicates the label of the folder containing the parameter in question.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LABEL                 | Indicates the label used to display the parameters in the menu of the controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PAR. ADDR.  VIS. PAR. | The whole part represents the address of the MODBUS register containing the value of the resource to be read or written in the controller. The value after the decimal point indicates the position of the most significant data bit inside the register; if not indicated it is taken to be zero. This information is always provided when the register contains more than one information item, and it is necessary to distinguish which bits actually represent the data (the working size of the data indicated in the column DATA SIZE is also taken into consideration). Given that the modbus registers have the size of one WORD (16 bit), the index number after the point can vary from 0 (least significant bit -LSb-) to 15 (most significant bit -MSb-)  The same as above. In this case, the MODBUS register address contains the visibility value of |
| ADDR.                 | the parameter. By default all parameters have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | Data size: 2 bit     Range: 03     Visibility: * 3     M.U.: num  * Defor to "6.8. Setting a password (Par/PASS folder)" on page 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | * Refer to "6.8 - Setting a password (Par/PASS folder)" on page 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RESET (Y/N)           | Indicates whether the device MUST be rebooted after the parameter has been changed;  • Y=YES the device MUST be rebooted to save the parameter change  • N=NO the device DOES NOT need to be rebooted after changing the parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| R/W                   | Indicates the option of reading or writing the resource  R: the resource is read-only; W: the resource is write-only; RW: The resource can be both read and written                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DATA SIZE             | Indicates the size of the data in bits.  • WORD = 16 bit  • Byte = 8 bit  • "n" bit = 115 bit based on the value of "n"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DESCRIPTION           | This is the description of the parameter function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RANGE                 | Describes the interval of values that can be assigned to the parameter. It can be correlated with other parameters in the instrument (indicated with the parameter label). If the real value is outside the permitted limits for the parameter (for example, because other parameters defining the limits have been changed), the limit that has been passed and not the actual value will be displayed.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| CPL     | When the field indicates "Y", the value read by the register needs to be converted because the value represents a number with a sign. In the other cases the value is always positive or null.                                                                                                    |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | To carry out conversion, proceed as follows:  • if the value in the register is between 0 and 32,767, the result is the value itself (zero and positive values);  • If the value in the register is between 32,768 and 65,535, the result is the value of the register – 65,536 (negative values) |
| EXP     | If = -1 the value read by the register is divided by 10 (value/10) to convert it to the values indicated in the RANGE and DEFAULT columns using the unit of measurement in the UM column.                                                                                                         |
| Default | Indicate the factory setting.                                                                                                                                                                                                                                                                     |
|         | Example.                                                                                                                                                                                                                                                                                          |
|         | Parameter dL01 = 50.0. Column EXP = -1:                                                                                                                                                                                                                                                           |
|         | The value read by the device is 50.0                                                                                                                                                                                                                                                              |
|         | • The value read by the register is 500> 500/10 = 50.0.                                                                                                                                                                                                                                           |
| U.M.    | Unit of measure for values converted according to the rules indicated in the CPL column                                                                                                                                                                                                           |
|         | The unit of measure shown is for example purposes only, as it may change depending on the application                                                                                                                                                                                             |
|         | (e.g. parameters with an U.M. in °C/bar could also have %RH).                                                                                                                                                                                                                                     |

### **Examples for PAR ADDR.** (in binary form the least significant bit is the first on the right):

| ADDR    | DATA SIZE | Value | Content of register |                             |  |  |  |  |
|---------|-----------|-------|---------------------|-----------------------------|--|--|--|--|
| 8806    | WORD      | 1350  | 1350                | 0000010101000110)           |  |  |  |  |
| 8806    | Byte      | 70    | 1350                | (00000101 <b>01000110</b> ) |  |  |  |  |
| 8806.8  | Byte      | 5     | 1350                | ( <b>00000101</b> 01000110) |  |  |  |  |
| 8806.14 | 1 bit     | 0     | 1350                | (0 <b>0</b> 00010101000110) |  |  |  |  |
| 8806.7  | 4 bit     | 10    | 1350                | (00000 <b>1010</b> 1000110) |  |  |  |  |

Tab. 38 Description of columns

**Note**: when the register contains more than one piece of data, the write procedure is as follows:

- 1. read current register value
- 2. modify the bits for the resource concerned
- 3. register writing.

### **Examples for VIS. PAR. ADDR.** (in binary form the least significant bit is the first on the right):

| ADDR    | DATA SIZE | Value | Content of register |                             |  |  |  |  |
|---------|-----------|-------|---------------------|-----------------------------|--|--|--|--|
| 49482   | 2 bit     | 0     | 120                 | (0000000011110 <b>00</b> )  |  |  |  |  |
| 49482.2 | 2 bit     | 2     | 120                 | (00000000111 <b>10</b> 00)  |  |  |  |  |
| 49482.4 | 2 bit     | 3     | 120                 | (0000000001 <b>11</b> 1000) |  |  |  |  |
| 49482.6 | 2 bit     | 1     | 120                 | (00000000 <b>01</b> 111000) |  |  |  |  |

Tab. 39 Default visibility

| ADDR  | DATA SIZE | Value | Content of register |                             |  |  |  |  |
|-------|-----------|-------|---------------------|-----------------------------|--|--|--|--|
| 49484 | 2 bit     | 0     | 72                  | (0000000001 <b>00</b> 1000) |  |  |  |  |

Tab. 40 Visibility modified

### 10.2.1 - Parameters / visibility table

The change of values in the parameters can lead to the interruption of the drivers functioning waiting for external input via RS485.

### **NOTICE**

### **INCORRECT PARAMETER CONFIGURATION**

In changing the levels of parameters found in the GREY cells.

Failure to follow these instructions can result in equipment damage.

| LABEL | PAR. ADDR | VIS. PAR.<br>ADDR | RESET (Y/N) | R/W | DATA SIZE | DESCRIPTION                                                                                                                                                                                                                                                                                                                               | RANGE   | CPL | ЕХР | DEFAULT | U.M. |
|-------|-----------|-------------------|-------------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----|---------|------|
| dF00  | 49158     | 49434,6           | N           | RW  | BYTE      | Select COM0 protocol  • 0 = Eliwell  • 1 = Modbus  • 2,3 = Reserved.                                                                                                                                                                                                                                                                      | 0 3     |     |     | 1       | num  |
| dF02  | 49200     | 49435,2           | N           | RW  | ВУТЕ      | Selection of activation type valve regulator  • 0= digital input  • 1= RS485 serial communication  • 2= ON/OFF  • 3= EWCM EONote:  If dL40 and/or dL41 ≠ 0 the control comes from the serial. The Digital inputs DI1, DI2 (when appropriately configured ≠ 0) in any case ALWAYS have priority over the commands received from the serial | 0 3     |     |     | 0       | num  |
| dF20  | 49172     | 49437             | N           | RW  | BYTE      | Eliwell protocol controller address dF20= address of the device within the family (valid values from 0 to 14) dF21 = device family (valid values from 0 to 14) The two values dF20 and dF21 represent the network address of the device and the pair are indicated in the following format "FF.DD" (where FF=dF21 and DD=dF20).           | 0 14    |     |     | 0       | num  |
| dF21  | 49173     | 49437,2           | N           | RW  | BYTE      | Eliwell protocol controller family<br>See <b>dF20</b>                                                                                                                                                                                                                                                                                     | 0 14    |     |     | 0       | num  |
| dF30  | 49175     | 49437,6           | Υ           | RW  | BYTE      | Modbus protocol controller address                                                                                                                                                                                                                                                                                                        | 0 255   |     |     | 1       | num  |
| dF31  | 49176     | 49438             | Υ           | RW  | BYTE      | Modbus baud rate protocol  • 0=1200 baud  • 1=2400 baud  • 2=4800 baud  • 3=9600 baud  • 4=19200 baud  • 5=38400 baud (maximum speed, to be set using DeviceManager software)  • 6=57600 baud  • 7=115200 baud                                                                                                                            | 0 7     |     |     | 3       | num  |
| dF32  | 49177     | 49438,2           | Υ           | RW  | BYTE      | Modbus parity protocol • 0= NONE • 1= EVEN (even) • 2= ODD (uneven)                                                                                                                                                                                                                                                                       | 0 2     |     |     | 1       | num  |
| dF42  | 16424     | 49439             |             | RW  | BYTE      | Tab                                                                                                                                                                                                                                                                                                                                       | 0 65535 |     |     | 1       | num  |
| dF43  |           |                   |             | R   |           | Firmware screen                                                                                                                                                                                                                                                                                                                           | 0 999   |     |     | 547     | num  |
| dF44  | 10:       |                   |             | R   |           | Firmware release                                                                                                                                                                                                                                                                                                                          | 0 999   |     |     | 0       | num  |
| dF60  | 16426     |                   | N           | RW  | WORD      | Customer code 1                                                                                                                                                                                                                                                                                                                           | 0 999   |     |     | 0       | num  |
| dF61  | 16428     | 49440             | N           | RW  | WORD      | Customer code 2                                                                                                                                                                                                                                                                                                                           | 0 999   |     |     | 0       | num  |

| LABEL | PAR. ADDR | VIS. PAR.<br>ADDR | RESET (Y/N) | R/W | DATA SIZE | DESCRIPTION                                                                                                                                                                                                         | RANGE               | CPL | EXP | DEFAULT | U.M.             |
|-------|-----------|-------------------|-------------|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|-----|---------|------------------|
| dL00  | 50894     | 49429,2           | Υ           | RW  | ВУТЕ      | Analogue input dAi1 type  • 0= Non configured probe  • 1= NTC  • 2= Pt1000  • 3= 420mA  • 4= Ratiometric transducer 0-5V  • 5=0-10V                                                                                 | 0 5                 |     |     | 3       | num              |
| dL01  | 50895     | 49429,4           | Υ           | RW  | BYTE      | Analogue input dAi2 type<br>See dL00                                                                                                                                                                                | 0 5                 |     |     | 3       | num              |
| dL02  | 50896     | 49429,6           | Υ           | RW  | BYTE      | Analogue input dAi3 type  • 0= Non configured probe  • 1= NTC  • 2= Pt1000                                                                                                                                          | 0 2                 |     |     | 1       | num              |
| dL03  | 50897     | 49430             | Υ           | RW  | BYTE      | Analogue input dAi4 type<br>See dL02                                                                                                                                                                                | 0 2                 |     |     | 0       | num              |
| dL08  | 50923     | 49430,2           | Υ           | RW  | BYTE      | °C/°F selection<br>0= °C; 1=°F                                                                                                                                                                                      | 0 1                 |     |     | 0       | flag             |
| dL09  | 50924     | 49430,4           | N           | RW  | BYTE      | Pressure unit of measure 0= bar 1=PSI                                                                                                                                                                               | 0 1                 |     |     | 0       | flag             |
| dL10  | 18130     | 49430,6           | N           | RW  | WORD      | Analogue input dAi1 fullscale value                                                                                                                                                                                 | <b>dL11</b><br>9999 | Υ   | -1  | 70      | bar/PSI          |
| dL11  | 18140     | 49431             | N           | RW  | WORD      | Analogue input dAi1 start of scale value                                                                                                                                                                            | -145<br><b>dL10</b> | Υ   | -1  | -5      | bar/PSI          |
| dL12  | 18132     | 49431,2           | N           | RW  | WORD      | Analogue input dAi2 fullscale value                                                                                                                                                                                 | <b>dL13</b><br>9999 | Y   | -1  | 500     | bar/PSI          |
| dL13  | 18142     | 49431,4           | N           | RW  | WORD      | Analogue input dAi2 start of scale value                                                                                                                                                                            | -145<br><b>dL12</b> | Y   | -1  | 0       | bar/PSI          |
| dL20  | 50918     | 49431,6           | Υ           | RW  | BYTE      | Analogue input dAi1 differential                                                                                                                                                                                    | -120<br>120         | Υ   | -1  | 0       | bar/PSI<br>°C/°F |
| dL21  | 50919     | 49432             | Υ           | RW  | BYTE      | Analogue input dAi2 differential                                                                                                                                                                                    | -120<br>120         | Y   | -1  | 0       | bar/PSI<br>°C/°F |
| dL22  | 50920     | 49432,2           | Υ           | RW  | BYTE      | Analogue input dAi3 differential                                                                                                                                                                                    | -120<br>120         | Y   | -1  | 0       | °C/°F            |
| dL23  | 50921     | 49432,4           | Υ           | RW  | BYTE      | Analogue input dAi4 differential                                                                                                                                                                                    | -120<br>120         | Υ   | -1  | 0       | °C/°F            |
| dL30  | 50934     | 49432,6           | N           | RW  | BYTE      | Analogue input dAi1 configuration  • 0= disabled  • 1= evaporator output (overheating)  • 2= saturation  • 3= backup evaporator output (overheating)  • 4= backup saturation  • 5= discharge  • 6= Regulator ON/OFF | 0 6                 |     |     | 2       | num              |
| dL31  | 50935     | 49433             | N           | RW  | BYTE      | Analogue input dAi2 configuration See dL30                                                                                                                                                                          | 0 6                 |     | _   | 5       | num              |
| dL32  | 50936     | 49433,2           | N           | RW  | BYTE      | Analogue input dAi3 configuration                                                                                                                                                                                   | 0 6                 |     |     | 1       | num              |
| dL33  | 50937     | 49433,4           | N           | RW  | BYTE      | Analogue input dAi4 configuration<br>See dL33                                                                                                                                                                       | 0 6                 |     |     | 0       | num              |
| dL40  | 50926     | 49433,6           | Υ           | RW  | ВҮТЕ      | Digital input ddi1 configuration  • 0 = digital input not configured  • ±1 = ON/OFF adjustment  • ±2 = defrost  • ±3 = alarm  • ±4 = system operating mode (only modes 0 and 1)                                     | -4 4                | Υ   |     | 1       | num              |

| LABEL | PAR. ADDR | VIS. PAR.<br>ADDR | RESET (Y/N) | R/W | DATA SIZE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RANGE         | CPL | EXP | DEFAULT | U.M.    |
|-------|-----------|-------------------|-------------|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|-----|---------|---------|
| dL41  | 50927     | 49434             | Υ           | RW  | BYTE      | Digital input ddi2 configuration<br>See dL40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4 4          | Υ   |     | 0       | num     |
| dL90  | 50940     | 49434,2           | Υ           | RW  | вуте      | Digital output ddO1 configuration (relay)  • 0 = output controlled from serial  • ±1 = solenoid valve control  • ±2 = alarm output  • ±3 = ON/OFF output  • ±4 = remote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4 4          | Υ   |     | 1       | num     |
| dL91  | 50941     | 49434,4           | Υ           | RW  | BYTE      | Digital output ddO2 configuration (O.C.) See dL90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4 4          | Υ   |     | 0       | num     |
| dE00  | 49201     | 49442             | Y           | RW  | BYTE      | Valve model see "10.2.2 - Valve configuration parameters" on page 92"  • 0 = customisable (see "10.2.3 - Valve configuration parameter table dE01dE09, dE80 with dE00 = 0" on page 93) For values from 1 to 15 see "10.2.4 - Valve configuration parameter table dE01dE09, dE80 with dE00 ≠ 0" on page 95 • 1 = DANFOSS ETS50 • 2 = DANFOSS ETS100 • 3 = DANFOSS CM 10-20-30 • 4 = DANFOSS CM 40 • 5= ALCO EX7 • 6= ALCO EX8 • 7= CAREL E2V E3V E4V E5V E6V E7V • 8= SPORLAN SER 1.5 TO 20 • 9= SPORLAN SEI-30 • 10= SPORLAN SEI-50 • 11= ALCO EX4 EX5 EX6 • 12 = SPORLAN SER(I) G, J, K, B, C, D • 13= ELIWELL by Schneider electric SXVB Body 1 • 14 = ELIWELL by Schneider Electric SXVB Body 4 | 0 15          |     |     | 15      | num     |
| dE10  | 49208     | 49442,2           | N           | RW  | ВҮТЕ      | Maximum valve opening percentage Defines the maximum valve opening value, meaning the actuation limits in percentages. 0 indicates valve completely closed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 100         |     |     | 100     | %       |
| dE11  | 49209     | 49442,4           | N           | RW  | BYTE      | Valve actuation percentage after black-out Value calculated automatically but settable using this parameter for first start-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 100         |     |     | 0       | %       |
| dE12  | 49210     | 49442,6           | N           | RW  | вуте      | Valve actuation percentage after defrosting  Value calculated automatically but settable using this parameter for first start-up.  If = 0 the percentage is defined by dE11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 100         |     |     | 0       | %       |
| dE13  | 49211     | 49443             | N           | RW  | BYTE      | Operating time at max opening for alarm signal If the valve opening remains at a value of greater than dE10 for the time set by dE13 a maximum opening alarm will be given dA07 (see Alarms chapter) If = 0 signal disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 255         |     |     | 60      | minutes |
| dE14  | 49212     | 49443,2           | N           | RW  | BYTE      | Minimum valve useful opening percentage If the regulator commands an output of less than or equal to dE14, the actual output = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 <b>dE15</b> |     |     | 0       | %       |

| LABEL | PAR. ADDR | VIS. PAR.<br>ADDR | RESET (Y/N) | R/W | DATA SIZE | DESCRIPTION                                                                                                                                                                    | RANGE        | CPL | EXP | DEFAULT | U.M.             |
|-------|-----------|-------------------|-------------|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|---------|------------------|
| dE15  | 49213     | 49443,4           | N           | RW  | BYTE      | Maximum valve useful opening percentage If the regulator commands an output of more than or equal to dE15 the actual output is dE10 (with dE15 < dE10). Ignored if dE15 > dE10 | dE14<br>dE10 |     |     | 100     | %                |
| dE16  | 49214     | 49443,6           | N           | RW  | BYTE      | Valve opening percentage during probe error  If a probe error sets the valve opening, in percentage, for a time dE13                                                           | 0 100        |     |     | 0       | %                |
| dE19  | 49222     | 49444             | N           | RW  | BYTE      | Tolerance on winding resistance<br>Stepper motor                                                                                                                               | 0 255        |     |     | 65      | %                |
| dE74  | 16464     | 49461             | N           | RW  | BYTE      | Regulation setpoint                                                                                                                                                            | -999<br>9999 |     | -1  | 0       | num              |
| dE75  | 16466     | 49461,2           | N           | RW  | BYTE      | Differential of set point                                                                                                                                                      | 1 9999       |     | -1  | 40      | num              |
| dE76  | 49236     | 49461,4           | N           | RW  | BYTE      | ON time of regulator due faulty probe                                                                                                                                          | 0 255        |     |     | 0       | min              |
| dE77  | 49237     | 49461,6           | N           | RW  | BYTE      | OFF time of regulator due faulty probe                                                                                                                                         | 0 255        |     |     | 0       | min              |
| dE78  | 49229     | 49462             | N           | RW  | вуте      | Set point operating mode (Heating/Cooling) 0= disabled 1=HEAT 2= COOL                                                                                                          | 0 2          |     |     | 0       | num              |
| dE79  | 16604     | 49462,2           | N           | RW  | BYTE      | PID Setpoint                                                                                                                                                                   | -999<br>9999 |     | -1  | 250     | num              |
| dE81  | 49364     | 49462,4           | N           | RW  | BYTE      | PID regulator mode  0= disabled  1= local regulator  2= remote  3= only PID pressure  4= RESERVED.                                                                             | 0 4          |     |     | 1       | num              |
| dE82  | 16584     | 49462,6           | N           | RW  | BYTE      | PID proportional band                                                                                                                                                          | -999<br>9999 |     | -1  | -100    | num              |
| dE83  | 16586     | 49463,2           | N           | RW  | BYTE      | Pressure integral gain                                                                                                                                                         | 1 9999       |     |     | 60      | num              |
| dE85  | 16590     | 49463,4           | N           | RW  | BYTE      | Pressure PID cycle time                                                                                                                                                        | 1 1999       |     |     | 1       | sec*10           |
| dE89  | 16592     | 49464,4           | N           | RW  | BYTE      | Pressure PID neutral zone                                                                                                                                                      | 1 1999       | Υ   |     | 10      | bar/PSI<br>°C/°F |
| dE97  | 49224     | 49464,6           | N           | RW  | BYTE      | Valve override period                                                                                                                                                          | 0 255        |     |     | 48      | hours            |
| dE_5  | 49180     | 49453             | N           | RW  | BYTE      | Minimum overheating percentage in forced mode                                                                                                                                  | 0 100        |     |     | 0       | %                |
| dE_6  | 49181     | 49426             | N           | RW  | ВҮТЕ      | Activation time of minimum overheating percentage - forced mode  During time period dE_6 the CO2 implementation percentage has the dE-5 value as its lower limit               | 0 255        |     |     | 0       | sec              |
| dE93  | 49231     | 49444,2           | N           | RW  | BYTE      | Motor activation/disabling time Sets the enabling/disabling cycle (Duty cycle) of the stepper motor. See dE08                                                                  | 0 255        |     |     | 10      | sec*10           |

| LABEL | PAR. ADDR | VIS. PAR.<br>ADDR | RESET (Y/N) | R/W | DATA SIZE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                         | RANGE        | CPL | EXP | DEFAULT | U.M.    |
|-------|-----------|-------------------|-------------|-----|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|-----|---------|---------|
| dE20  | 49215     | 49444,4           | Y           | RW  | вуте      | Select type of gas Use only if the configuration via Dip Switch is set to 15.  If not dE20 will be ignored.  (0) r404=R404A  (1) r22=r22  (2) r410=R410a  (3) r134=R134a  (4) r744=R744 (C02)  (5) r407=R407C  (6) r427=R427A  (7) r507=R507A  (8) r717=R717  (9) Reserved  (10)407A=R407A  (11) r448=R448A  (12) r449=R449A  (13) r450=R450A  (14) r513=R513A  (15) = customisable (R404A default) | 0 15         |     |     | 3       | num     |
| dE21  | 49216     | 49444,6           | N           | RW  | BYTE      | Type of system operating mode 0  • 0= User setting  • 116=RESERVED.                                                                                                                                                                                                                                                                                                                                 | 0 16         |     |     | 5       | num     |
| dE22  | 49225     | 49445             | N           | RW  | BYTE      | Type of system operating mode 1<br>See dE02                                                                                                                                                                                                                                                                                                                                                         | 0 16         |     |     | 5       | num     |
| dE23  | 49226     | 49445,2           | N           | RW  | BYTE      | Type of system operating mode 2<br>See dE02                                                                                                                                                                                                                                                                                                                                                         | 0 16         |     |     | 5       | num     |
| dE24  | 49227     | 49445,4           | N           | RW  | BYTE      | Type of system operating mode 3 See dE02                                                                                                                                                                                                                                                                                                                                                            | 0 16         |     |     | 5       | num     |
| dE30  | 49308     | 49445,6           | N           | RW  | ВҮТЕ      | Enable overheating recalculation reference Used to enable the automatic recalculation of the referred Setpoint in order to regulate the overheating 0 = recalculation disabled. Setpoint = dE31 1= automatic recalculation enabled                                                                                                                                                                  | 0 1          |     |     | 0       | flag    |
| dE31  | 16512     | 49446             | N           | RW  | WORD      | Maximum overheating setpoint offset Used to set the setpoint SP4 at dE31 (SP2) to regulate the overheating following a black-out or at the end of defrost. Active for the time set by dE51 (or when the MOP function is disabled)                                                                                                                                                                   | 0 1000       |     | -1  | 30      | °C/°F   |
| dE32  | 16510     | 49446,2           | N           | RW  | WORD      | Overheating lower threshold  Used to set the setpoint SP2 to regulate the overheating (objective overheating)  If dE30=1 and the calculated setpoint < dE32, then the dynamic setpoint will be = dE32.                                                                                                                                                                                              | -600<br>1000 |     | -1  | 60      | °C/°F   |
| dE33  | 16514     | 49446,4           | N           | RW  | WORD      | Overheating reference recalculation period  Valid for dE30=1  Defines the recalculation period of the dynamic setpoint (every dE33 seconds)                                                                                                                                                                                                                                                         | 0 999        |     |     | 20      | seconds |
| dE34  | 16516     | 49446,6           | N           | RW  | WORD      | Overheating recalculation step  Dynamic setpoint varies by dE34 degrees according to the overheating value compared to dE32.                                                                                                                                                                                                                                                                        | 0 1000       |     | -1  | 1       | °C/°F   |
| dE35  | 16470     | 49447             | N           | RW  | WORD      | Valve opening freezing timer after OFF->ON                                                                                                                                                                                                                                                                                                                                                          | 0 1999       |     |     |         | seconds |
| dE36  | 16518     | 49447,2           | N           | RW  | WORD      | Overheating proportional band                                                                                                                                                                                                                                                                                                                                                                       | -99991       | Υ   | -1  | -100    | K       |
| dE37  | 16520     | 49447,4           | N           | RW  | WORD      | Overheating integral gain                                                                                                                                                                                                                                                                                                                                                                           | 1 1999       |     |     | 60      | num     |
| dE39  | 16524     | 49448             | N           | RW  | WORD      | Overheating PID cycle period                                                                                                                                                                                                                                                                                                                                                                        | 1 1999       |     | -1  | 1       | seconds |

| LABEL | PAR. ADDR | VIS. PAR.<br>ADDR | RESET (Y/N) | R/W | DATA SIZE | DESCRIPTION                                                                                                                                                                                                         | RANGE          | CPL | EXP | DEFAULT | U.M.             |
|-------|-----------|-------------------|-------------|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-----|---------|------------------|
| dE46  | 16526     | 49449,6           | N           | RW  | WORD      | Overheating PID neutral zone                                                                                                                                                                                        | 1 1999         |     | -1  | 10      | bar/PSI<br>°C/°F |
| dE47  | 49329     | 49450             | N           | RW  | BYTE      | Enable valve manual opening  0= Automatic valve opening  1= Manual valve opening.                                                                                                                                   | 0 1            |     |     | 0       | flag             |
| dE48  | 16546     | 49450,2           | N           | RW  | WORD      | Valve manual opening Note: valid if dE47=1. Note: valve opening switched from automatic to manual (dE47=1) the opening percentage is not 0% as per default parameter but the percentage indicated by this parameter | 0.0<br>100.0   |     | -1  | 0       | %                |
| dE50  | 49270     | 49450,4           | N           | RW  | BYTE      | Enable MOP 0= MOP disabled; 1 = MOP enabled.                                                                                                                                                                        | 0 1            |     |     | 0       | flag             |
| dE51  | 16478     | 49450,6           | N           | RW  | WORD      | MOP disable time at start-up MOP activation delay on switching on or after defrost.                                                                                                                                 | 0 999          |     |     | 0       | seconds          |
| dE52  | 16472     | 49451             | N           | RW  | WORD      | Evaporator temperature upper threshold  MOP setpoint                                                                                                                                                                | -60.0<br>100.0 | Υ   | -1  | 0       | °C/°F            |
| dE53  | 49271     | 49451,2           | N           | RW  | BYTE      | Min time that temp upper threshold is exceeded for alarm activation  If the dE52 threshold is exceeded for longer than dE53 the MOP alarm is given.                                                                 | 0 255          |     |     | 180     | seconds          |
| dE54  | 16480     | 49451,4           | N           | RW  | BYTE      | MOP proportional band                                                                                                                                                                                               | 1 9999         |     | -1  | 10      | K                |
| dE55  | 16482     | 49451,6           | N           | RW  | BYTE      | MOP integral gain                                                                                                                                                                                                   | 1 9999         |     |     | 10      | num              |
| dE57  | 16486     | 49452,2           | N           | RW  | BYTE      | MOP PID cycle period                                                                                                                                                                                                | 1 9999         |     | -1  | 1       | seconds          |
| dE64  | 16488     | 49454             | N           | RW  | BYTE      | MOP PID neutral zone                                                                                                                                                                                                | 1 9999         |     | -1  | 10      | bar/PSI<br>°C/°F |
| dE65  | 16508     | 49454,2           | N           | RW  | BYTE      | Outlet variation speed                                                                                                                                                                                              | 1 9999         |     | -1  | 200     | %/s              |
| Ui27  | 17988     | 49458,6           | N           | RW  | WORD      | Installation engineer password                                                                                                                                                                                      | 0 255          |     |     | 1       | num              |
| Ui28  | 17990     | 49459             | N           | RW  | WORD      | Manufacturer password                                                                                                                                                                                               | 0 255          |     |     | 2       | num              |

# 10.2.2 - Valve configuration parameters

| dE00 | Type of                              | dE01    | dE02   | dE03     | dE04      | dE05       | dE06   | dE07 | dE08 | dE09           | dE80    |
|------|--------------------------------------|---------|--------|----------|-----------|------------|--------|------|------|----------------|---------|
| -    | VALVE                                | steps/s | steps  | steps    | mA        | Ohm        | mA     | num  | %    | 10*ms/<br>step | steps/s |
| 0    | Customisable                         | 200     | 1596   | 100      | 120       | 100        | 50     | 0    | 100  | 50             | 15      |
| 1    | DANFOSS<br>ETS50                     | 160     | 2625   | 160      | 100       | 52         | 75     | 0    | 100  | 50             | 10      |
| 2    | DANFOSS<br>ETS100                    | 300     | 3530   | 160      | 100       | 52         | 75     | 0    | 100  | 50             | 10      |
| 3    | <b>DANFOSS</b><br>CM 10-20-30        | 240     | 2625   | 160      | 100       | 52         | 0      | 2    | 100  | 0              | 10      |
| 4    | DANFOSS<br>CM 40                     | 240     | 3530   | 160      | 100       | 52         | 0      | 2    | 100  | 50             | 10      |
| 5    | ALCO<br>EX7                          | 210     | 1600   | 100      | 750       | 8          | 250    | 0    | 100  | 50             | 10      |
| 6    | ALCO<br>EX8                          | 500     | 2600   | 100      | 800       | 6          | 500    | 0    | 100  | 50             | 10      |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | 50      | 480    | 70       | 450       | 36         | 100    | 5    | 30   | 0              | 10      |
| 8    | SPORLAN<br>SER 1.5 TO 20             | 200     | 1596   | 100      | 120       | 100        | 50     | 0    | 100  | 50             | 10      |
| 9    | SPORLAN<br>SEI-30                    | 200     | 3193   | 100      | 160       | 75         | 50     | 0    | 100  | 50             | 10      |
| 10   | SPORLAN<br>SEI-50*                   | 200     | 6386   | 100      | 160       | 75         | 50     | 0    | 100  | 50             | 10      |
| 11   | ALCO<br>EX4 EX5 EX6                  | 500     | 750    | 100      | 500       | 13         | 100    | 0    | 100  | 50             | 10      |
| 12   | SPORLAN SER(I)<br>G, J, K, B, C, D   | 160     | 2500   | 100      | 120       | 100        | 0      | 0    | 100  | 0              | 0       |
| 13   | ELIWELL By SE<br>SXVB Body 1         | 35      | 415    | 100      | -200      | 35         | 50     | 0    | 100  | 50             | 10      |
| 14   | ELIWELL By SE<br>SXVB Body 2-3       | 20      | 195    | 60       | -200      | 54         | 50     | 0    | 100  | 50             | 10      |
| 15   | ELIWELL By SE<br>SXVB4 Body 4        | 35      | 985    | 150      | -560      | 35         | 50     | 0    | 100  | 50             | 10      |
|      |                                      |         | Tab. 4 | 11 Valve | configura | ation para | meters |      |      |                |         |

<sup>\*</sup>Sporlan SEH: bipolar version only

### 10.2.3 - Valve configuration parameter table dE01...dE09, dE80 with dE00 = 0

NOTE: the parameter visibility cannot be set via the serial.

Check the data given in the valve manufacturer's manual for the correct configuration.

| dE00 | LABEL | PAR. ADDR | R/W | DATA SIZE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                            | RANGE         | CPL | EXP | DEFAULT | U.M.    |
|------|-------|-----------|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|-----|---------|---------|
| 0    | dE01  | 16722     | RW  | WORD      | Stepper motor maximum speed Defines the maximum valve motor speed to guarantee step precision and integrity                                                                                                                                                                                                                                                                                                                                            | 0 9999        |     |     | 200     | steps/s |
| 0    | dE02  | 16754     | RW  | WORD      | Stepper motor complete opening Defines the maximum number of valve steps. The total travel refers to the FULL STEP mode (dE07=0) The valve opening is complete when this value is reached.                                                                                                                                                                                                                                                             | 0 9999        |     |     | 1596    | steps   |
| 0    | dE03  | 49553     | RW  | вуте      | Stepper motor extra movement in total closure Defines the number of extra valve steps beyond the limit switch to guarantee correct total closure. A total closure command implies the valve positioned to zero and a further number of steps dE03.                                                                                                                                                                                                     | 0 255         |     |     | 100     | steps   |
| 0    | dE04  | 16802     | RW  | WORD      | Stepper motor winding maximum current Defines the maximum current for the phase used by the valve (maximum torque)  Negative value of the current: the maximum current will be set to the value with no sign (absolute) dE04 with an extra 50% with the valve movement command (starting or end point) within 5% of total opening, to a value equal to the absolute value of dE04 for the other movements.                                             | -1999<br>9999 |     |     | 120     | mA      |
| 0    | dE05  | 49601     | RW  | BYTE      | Stepper motor winding resistance Defines the electrical resistance of the single phase winding (check fault on connections)                                                                                                                                                                                                                                                                                                                            | 0 255         |     |     | 100     | ohm     |
| 0    | dE06  | 16850     | RW  | WORD      | Stepper motor winding rated current Defines the phase circulating current in the valve stop condition (minimum torque)                                                                                                                                                                                                                                                                                                                                 | 0 9999        |     |     | 50      | mA      |
| 0    | dE07  | 49649     | RW  | BYTE      | Type of stepper motor control Defines the driving modes.  • 0= FULL STEP • 1= HALF STEP • 2= MICRO STEP   • 3= Not used • 4= Not used • 5= Not used  Note that the current driving is a maximum value for the FULL STEP mode while the other two modes, modulating the value of the winding currents, offers greater resolution and fluidity of movement but with less torque.  Refer to the literature concerning step-by-step motors for more detail | 0 5           |     |     | 0       | num     |

| dE00 | LABEL | PAR. ADDR | R/W  | DATA SIZE | DESCRIPTION                                                                                                                                                                                                                       | RANGE      | CPL | EXP | DEFAULT | U.M.           |
|------|-------|-----------|------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----|---------|----------------|
| 0    | dE08  | 50961     | RW   | BYTE      | Stepper motor enabling/disabling duty cycle If the case of valve overheating, reduce the enabling duty cycle to allow it to cool down                                                                                             | 0 100      |     |     | 100     | %              |
| 0    | dE09  | 50977     | RW   | вүте      | Stepper motor acceleration/deceleration Defines the acceleration/deceleration in motor start/stop. The time between one step and the next is reduced by dE09 at each step until dE01 is reached If =0 acceleration is not applied | 0 255      |     |     | 50      | ms*10/<br>step |
| 0    | dE80  | 50993     | RW   | BYTE      | Minimum stepper motor speed in acceleration/deceleration  Defines the minimum speed at which the motor starts and stops                                                                                                           | 0 255      |     |     | 15      | steps/s        |
|      |       |           | Tab. | 42 Valve  | configuration parameters dE01dE09, dE80 w                                                                                                                                                                                         | ith dE00 = | =0  |     |         |                |

# 10.2.4 - Valve configuration parameter table dE01...dE09, dE80 with dE00 $\neq$ 0

| dE00 | VALVE                      | LABEL | PAR.<br>ADDR | R/W | DATA | DESCRIPTION                                              | RANGE     | CPL | EXP | DEFAULT | U.M.           |
|------|----------------------------|-------|--------------|-----|------|----------------------------------------------------------|-----------|-----|-----|---------|----------------|
| 1    | DANFOSS<br>ETS50           | dE01  | 16722        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 160     | steps/s        |
| 1    | DANFOSS<br>ETS50           | dE02  | 16754        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 2625    | steps          |
| 1    | DANFOSS<br>ETS50           | dE03  | 49553        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 160     | steps          |
| 1    | DANFOSS<br>ETS50           | dE04  | 16802        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 100     | mA             |
| 1    | DANFOSS<br>ETS50           | dE05  | 49601        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 52      | ohm            |
| 1    | DANFOSS<br>ETS50           | dE06  | 16850        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 75      | mA             |
| 1    | DANFOSS<br>ETS50           | dE07  | 49649        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 1    | DANFOSS<br>ETS50           | dE08  | 50961        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 1    | DANFOSS<br>ETS50           | dE09  | 50977        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 1    | DANFOSS<br>ETS50           | dE80  | 50993        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 15      | steps/s        |
| 2    | DANFOSS<br>ETS100          | dE01  | 16724        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 300     | steps/s        |
| 2    | DANFOSS<br>ETS100          | dE02  | 16756        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 3530    | steps          |
| 2    | DANFOSS<br>ETS100          | dE03  | 49554        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 160     | steps          |
| 2    | DANFOSS<br>ETS100          | dE04  | 16804        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 100     | mA             |
| 2    | DANFOSS<br>ETS100          | dE05  | 49602        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 52      | ohm            |
| 2    | DANFOSS<br>ETS100          | dE06  | 16852        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 75      | mA             |
| 2    | DANFOSS<br>ETS100          | dE07  | 49650        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 2    | DANFOSS<br>ETS100          | dE08  | 50962        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 2    | DANFOSS<br>ETS100          | dE09  | 50978        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 2    | DANFOSS<br>ETS100          | dE80  | 50994        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE01  | 16726        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 240     | steps/s        |
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE02  | 16758        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 2625    | steps          |
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE03  | 49555        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 160     | steps          |
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE04  | 16806        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 100     | mA             |
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE05  | 49603        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 52      | ohm            |
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE06  | 16854        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 0       | mA             |
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE07  | 49651        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 2       | num            |
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE08  | 50963        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |

| dE00 | VALVE                      | LABEL | PAR.<br>ADDR | R/W | DATA | DESCRIPTION                                              | RANGE     | CPL | EXP | DEFAULT | U.M.           |
|------|----------------------------|-------|--------------|-----|------|----------------------------------------------------------|-----------|-----|-----|---------|----------------|
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE09  | 50979        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 0       | ms*10/<br>step |
| 3    | <b>DANFOSS</b> CM 10-20-30 | dE80  | 50995        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 4    | DANFOSS<br>CM 40           | dE01  | 16728        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 240     | steps/s        |
| 4    | DANFOSS<br>CM 40           | dE02  | 16760        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 3530    | steps          |
| 4    | DANFOSS<br>CM 40           | dE03  | 49556        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 160     | steps          |
| 4    | DANFOSS<br>CM 40           | dE04  | 16808        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 100     | mA             |
| 4    | DANFOSS<br>CM 40           | dE05  | 49604        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 52      | ohm            |
| 4    | DANFOSS<br>CM 40           | dE06  | 16856        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 0       | mA             |
| 4    | DANFOSS<br>CM 40           | dE07  | 49652        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 2       | num            |
| 4    | DANFOSS<br>CM 40           | dE08  | 50964        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 4    | DANFOSS<br>CM 40           | dE09  | 50980        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 4    | DANFOSS<br>CM 40           | dE80  | 50996        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 5    | ALCO<br>EX7                | dE01  | 16730        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 210     | steps/s        |
| 5    | ALCO<br>EX7                | dE02  | 16762        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 1600    | steps          |
| 5    | ALCO<br>EX7                | dE03  | 49557        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 100     | steps          |
| 5    | ALCO<br>EX7                | dE04  | 16810        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 |     |     | 750     | mA             |
| 5    | ALCO<br>EX7                | dE05  | 49605        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 8       | ohm            |
| 5    | ALCO<br>EX7                | dE06  | 16858        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 250     | mA             |
| 5    | ALCO<br>EX7                | dE07  | 49653        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 5    | ALCO<br>EX7                | dE08  | 50965        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 5    | ALCO<br>EX7                | dE09  | 50981        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 5    | ALCO<br>EX7                | dE80  | 50997        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 6    | ALCO<br>EX8                | dE01  | 16732        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 500     | steps/s        |
| 6    | ALCO<br>EX8                | dE02  | 16764        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 2600    | steps          |
| 6    | ALCO<br>EX8                | dE03  | 49558        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 100     | steps          |
| 6    | ALCO<br>EX8                | dE04  | 16812        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 800     | mA             |
| 6    | ALCO<br>EX8                | dE05  | 49606        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 6       | ohm            |
| 6    | ALCO<br>EX8                | dE06  | 16860        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 500     | mA             |
| 6    | ALCO<br>EX8                | dE07  | 49654        | RW  | BYTE | 71                                                       | 05        |     |     | 0       | num            |
| 6    | ALCO<br>EX8                | dE08  | 50966        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |

| dE00 | VALVE                                | LABEL | PAR.<br>ADDR | R/W | DATA | DESCRIPTION                                              | RANGE     | CPL | EXP | DEFAULT | U.M.           |
|------|--------------------------------------|-------|--------------|-----|------|----------------------------------------------------------|-----------|-----|-----|---------|----------------|
| 6    | ALCO<br>EX8                          | dE09  | 50982        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 6    | ALCO<br>EX8                          | dE80  | 50998        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE01  | 16734        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 50      | steps/s        |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE02  | 16766        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 480     | steps          |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE03  | 49559        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 70      | steps          |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE04  | 16814        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 450     | mA             |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE05  | 49607        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 36      | ohm            |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE06  | 16862        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 100     | mA             |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE07  | 49655        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 5       | num            |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE08  | 50967        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 30      | %              |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE09  | 50983        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 0       | ms*10/<br>step |
| 7    | <b>CAREL</b> E2V E3V E4V E5V E6V E7V | dE80  | 50999        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE01  | 16736        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 200     | steps/s        |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE02  | 16768        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 1596    | steps          |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE03  | 49560        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 100     | steps          |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE04  | 16816        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 120     | mA             |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE05  | 49608        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 100     | ohm            |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE06  | 16864        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 50      | mA             |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE07  | 49656        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE08  | 50968        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE09  | 50984        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 8    | SPORLAN<br>SER 1.5 TO 20             | dE80  | 51000        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 9    | SPORLAN<br>SEI-30                    | dE01  | 16738        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 200     | steps/s        |
| 9    | SPORLAN<br>SEI-30                    | dE02  | 16770        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 3193    | steps          |
| 9    | SPORLAN<br>SEI-30                    | dE03  | 49561        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 100     | steps          |
| 9    | SPORLAN<br>SEI-30                    | dE04  | 16818        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 160     | mA             |
| 9    | SPORLAN<br>SEI-30                    | dE05  | 49609        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 75      | ohm            |

| dE00 | VALVE                                 | LABEL | PAR.<br>ADDR | R/W | DATA | DESCRIPTION                                              | RANGE     | CPL | EXP | DEFAULT | U.M.           |
|------|---------------------------------------|-------|--------------|-----|------|----------------------------------------------------------|-----------|-----|-----|---------|----------------|
| 9    | SPORLAN<br>SEI-30                     | dE06  | 16866        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 50      | mA             |
| 9    | SPORLAN<br>SEI-30                     | dE07  | 49657        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 9    | SPORLAN<br>SEI-30                     | dE08  | 50969        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 9    | SPORLAN<br>SEI-30                     | dE09  | 50985        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 9    | SPORLAN<br>SEI-30                     | dE80  | 51001        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 10   | SPORLAN<br>SEI-50*                    | dE01  | 16740        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 200     | steps/s        |
| 10   | SPORLAN<br>SEI-50*                    | dE02  | 16772        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 6386    | steps          |
| 10   | SPORLAN<br>SEI-50*                    | dE03  | 49562        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 100     | steps          |
| 10   | SPORLAN<br>SEI-50*                    | dE04  | 16820        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 160     | mA             |
| 10   | SPORLAN<br>SEI-50*                    | dE05  | 49610        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 75      | ohm            |
| 10   | SPORLAN<br>SEI-50*                    | dE06  | 16868        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 50      | mA             |
| 10   | SPORLAN<br>SEI-50*                    | dE07  | 49658        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 10   | SPORLAN<br>SEI-50*                    | dE08  | 50970        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 10   | SPORLAN<br>SEI-50*                    | dE09  | 50986        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 10   | SPORLAN<br>SEI-50*                    | dE80  | 51002        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE01  | 16742        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 500     | steps/s        |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE02  | 16774        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 750     | steps          |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE03  | 49563        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 100     | steps          |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE04  | 16822        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 500     | mA             |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE05  | 49611        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 13      | ohm            |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE06  | 16870        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 100     | mA             |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE07  | 49659        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE08  | 50971        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE09  | 50987        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 11   | ALCO<br>EX4-EX5-EX6                   | dE80  | 51003        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE01  | 16744        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 160     | steps/s        |
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE02  | 16776        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 2500    | steps          |
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE03  | 49564        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 10      | steps          |
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE04  | 16824        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | 120     | mA             |

| dE00 | VALVE                                 | LABEL | PAR.<br>ADDR | R/W | DATA | DESCRIPTION                                              | RANGE     | CPL | EXP | DEFAULT | U.M.           |
|------|---------------------------------------|-------|--------------|-----|------|----------------------------------------------------------|-----------|-----|-----|---------|----------------|
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE05  | 49612        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 100     | ohm            |
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE06  | 16872        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 0       | mA             |
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE07  | 49660        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE08  | 50972        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE09  | 50988        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 0       | ms*10/<br>step |
| 12   | SPORLAN<br>SER(I) G, J,<br>K, B, C, D | dE80  | 51004        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 0       | steps/s        |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE01  | 16746        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 35      | steps/s        |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE02  | 16778        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 415     | steps          |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE03  | 49565        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 100     | steps          |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE04  | 16826        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | -200    | mA             |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE05  | 49613        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 35      | ohm            |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE06  | 16874        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 50      | mA             |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE07  | 49661        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE08  | 50973        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE09  | 50989        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 13   | ELIWELL<br>By SE SXVB<br>Body 1       | dE80  | 51005        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3     | dE01  | 16748        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 20      | steps/s        |
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3     | dE02  | 16780        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 195     | steps          |
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3     | dE03  | 49566        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 60      | steps          |
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3     | dE04  | 16828        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | -200    | mA             |

| dE00 | VALVE                             | LABEL | PAR.<br>ADDR | R/W | DATA | DESCRIPTION                                              | RANGE     | CPL | EXP | DEFAULT | U.M.           |
|------|-----------------------------------|-------|--------------|-----|------|----------------------------------------------------------|-----------|-----|-----|---------|----------------|
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3 | dE05  | 49614        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 54      | ohm            |
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3 | dE06  | 16876        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 50      | mA             |
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3 | dE07  | 49662        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3 | dE08  | 50974        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3 | dE09  | 50990        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 14   | ELIWELL<br>By SE SXVB<br>Body 2-3 | dE80  | 51006        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE01  | 16750        | RW  | WORD | Maximum speed of stepper motor                           | 09999     |     |     | 35      | steps/s        |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE02  | 16782        | RW  | WORD | Complete opening of stepper motor                        | 09999     |     |     | 985     | steps          |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE03  | 49567        | RW  | BYTE | Extra movement in total closure of stepper motor         | 0255      |     |     | 150     | steps          |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE04  | 16830        | RW  | WORD | Stepper motor winding maximum current                    | -19999999 | Υ   |     | -560    | mA             |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE05  | 49615        | RW  | BYTE | Stepper motor winding Resistance                         | 0255      |     |     | 35      | ohm            |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE06  | 16878        | RW  | WORD | Stepper motor winding rated current                      | 09999     |     |     | 50      | mA             |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE07  | 49663        | RW  | BYTE | Stepper motor type of control                            | 05        |     |     | 0       | num            |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE08  | 50975        | RW  | BYTE | Duty cycle activation/disabling of stepper motor         | 0100      |     |     | 100     | %              |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE09  | 50991        | RW  | BYTE | Acceleration/deceleration of stepper motor               | 0255      |     |     | 50      | ms*10/<br>step |
| 15   | ELIWELL<br>By SE SXVB4<br>Body 4  | dE80  | 51007        | RW  | BYTE | Minimum stepper motor speed in acceleration/deceleration | 0255      |     |     | 10      | steps/s        |

Tab. 43 Valve configuration parameters **dE01**...**dE09**, **dE80** with **dE** ≠0

# 10.2.5 - Folder visibility table

| LABEL | PAR. ADDR | R/W | DESCRIPTION       | DATA SIZE | RANGE | CPL | EXP | DEFAULT | U.M. |
|-------|-----------|-----|-------------------|-----------|-------|-----|-----|---------|------|
| rE    | 49424     | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| Ai    | 49424,2   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| of    | 49424,4   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| dO    | 49424,6   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| SP    | 49425     | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| PAr   | 49425,2   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| FnC   | 49425,4   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| PASS  | 49425,6   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| SP1   | 49426,2   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| SP2   | 49426,4   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| SP3   | 49426,6   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| SP4   | 49427     | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| dF    | 49427,4   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| dF43  | 49449     | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| dF44  | 49449,2   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| dL    | 49427,2   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| dE    | 49427,6   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| UI    | 49428     | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| СС    | 49428,2   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| UL    | 49459,2   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| DL    | 49459,4   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |
| FR    | 49459,6   | RW  | Folder visibility | 2 bit     | 03    |     |     | 3       | num  |

Tab. 44 Display Folder

### 10.2.6 - Client Table

| INDEX | FOLDER   | LABEL           | PAR.<br>ADDR | R/W | DESCRIPTION                                             | DATA<br>SIZE | RANGE    | CPL | EXP | U.M.              |
|-------|----------|-----------------|--------------|-----|---------------------------------------------------------|--------------|----------|-----|-----|-------------------|
| 1     | Ai       | dAi1            | 563          | R   | Analogue input 1 (display)                              |              | -5009999 | Υ   | -1  | °C/°F/<br>bar/PSI |
| 2     | Ai       | dAi2            | 565          | R   | Analogue input 2 (display)                              | WORD         | -5009999 | Υ   | -1  | °C/°F/<br>bar/PSI |
| 5     | Ai       | dAi3            | 567          | R   | Analogue input 3 (display)                              | WORD         | -5009999 | Υ   | -1  | °C/°F             |
| 6     | Ai       | dAi4            | 569          | R   | Analogue input 4 (display)                              | WORD         | -5009999 | Υ   | -1  | °C/°F             |
| 7     | Ai       | drE1            | 432          | R   | Valve overheating temperature EEVD                      | WORD         | -5009999 | Υ   | -1  | °C/°F             |
| 8     | Ai       | drE2            | 434          | R   | Valve saturation temperature EEVD                       | WORD         | -5009999 | Υ   | -1  | °C/°F             |
| 9     | Ai       | drE3            | 436          | R   | Valve overheating temperature EEVD (back-up)            | WORD         | -5009999 | Υ   | -1  | °C/°F             |
| 10    | Ai       | drE4            | 438          | R   | Valve saturation temperature EEVD (back-up)             | WORD         | -5009999 | Υ   | -1  | °C/°F             |
| 11    | Ai       | drE5            | 446          | R   | Valve overheating EEVD                                  | WORD         | -5009999 | Υ   | -1  | K/°R              |
| 12    | Ai       | drE6            | 448          | R   | valve evaporator pressure EEVD                          | WORD         | -5009999 | Υ   | -1  | bar/PSI           |
| 13    | Ai       | drE7            | 450          | R   | valve opening percentage EEVD                           |              |          |     | -1  | %                 |
| 14    | Ai       | SP4             | 519          | R   | valve overheating setpoint EEVD                         |              |          | Υ   | -1  | K/°R              |
| 29    | Ai       | evaporatorPress | 525          | RW  | remote valve evaporator pressure (shared probe)         |              | -5009999 |     | -1  | PSI               |
| 30    | Ai       | evaporatorTemp  | 527          | RW  | valve saturation temperature from remote (shared probe) | WORD         | -5009999 | Υ   | -1  | °F                |
| 31    | Di       | ddi1            | 33062        | R   | Digital input 1                                         | 1 bit        | 01       |     |     | flag              |
| 32    | Di       | ddi2            | 33062,1      | R   | Digital input 2                                         | 1 bit        | 01       |     |     | flag              |
| 33    | Di       | Dip1            | 33058,1      | R   | DIP switch 1 status                                     | 1 bit        | 01       |     |     | flag              |
| 34    | Di       | Dip2            | 33058,2      | R   | DIP switch 2 status                                     | 1 bit        | 01       |     |     | flag              |
| 35    | Di       | Dip3            | 33058,3      | R   | DIP switch 3 status                                     | 1 bit        | 01       |     |     | flag              |
| 36    | Di       | Dip4            | 33058,4      | R   | DIP switch 4 status                                     | 1 bit        | 01       |     |     | flag              |
| 37    | Di       | Dip5            | 33058,5      | R   | DIP switch 5 status                                     | 1 bit        | 01       |     |     | flag              |
| 38    | Di       | Dip6            | 33058,6      | R   | DIP switch 6 status                                     | 1 bit        | 01       |     |     | flag              |
| 39    | dO       | ddO1            | 33063,6      | R   | Digital output ddO1                                     | 1 bit        | 01       |     |     | flag              |
| 40    | dO       | ddO2            | +            |     | Digital output ddO2                                     | 1 bit        | 01       |     |     |                   |
|       |          | Er01            | 33063,5      | R   | Probe error dAi1                                        |              |          |     |     | flag              |
| 41    | Alarm    |                 | 33052,1      | R   |                                                         | 1 bit        | 01       |     |     | flag              |
| 42    | Alarm    | Er02            | 33052,2      | R   | Probe error dAi2                                        | 1 bit        | 01       |     |     | flag              |
| 43    | Alarm    | Er03            | 33052,3      | R   | Probe error dAi3                                        | 1 bit        | 01       |     |     | flag              |
| 44    | Alarm    | Er04            | 33052,4      | R   | Probe error dAi4                                        | 1 bit        | 01       |     |     | flag              |
| 45    | Alarm    | Er05            | 33052,5      | R   | Valve overheating probe alarm EEVD                      | 1 bit        | 01       |     |     | flag              |
| 46    | Alarm    | Er06            | 33052,6      | R   | Valve saturation probe alarm EEVD                       | 1 bit        | 01       |     |     | flag              |
| 47    | Alarm    | Er07            | 33052,7      | R   | Valve MOP alarm EEVD                                    | 1 bit        | 01       |     |     | flag              |
| 48    | Alarm    | Er08            | 33053        | R   | Valve output max alarm EEVD                             | 1 bit        | 01       |     |     | flag              |
| 49    | Alarm    | Er09            | 33053,1      | R   | Valve external alarm EEVD                               | 1 bit        | 01       |     |     | flag              |
| 50    | Alarm    | Er10            | 33053,2      | R   | Valve no-link alarm EEVD                                | 1 bit        | 01       |     |     | flag              |
| 51    | Alarm    | Er11            | 33053,3      | R   | Valve motor alarm EEVD: high current absorption         | 1 bit        | 01       |     |     | flag              |
| 52    | Alarm    | Er12            | 33053,4      | R   | Valve motor alarm EEVD: winder 1 not connected          | 1 bit        | 01       |     |     | flag              |
| 53    | Alarm    | Er13            | 33053,5      | R   | Valve motor alarm EEVD: winder 1 in short circuit       | 1 bit        | 01       |     |     | flag              |
| 54    | Alarm    | Er14            | 33053,6      | R   | Valve motor alarm EEVD: winder 2 not connected          | 1 bit        | 01       |     |     | flag              |
| 55    | Alarm    | Er15            | 33053,7      | R   | Valve motor alarm EEVD: winder 2 in short circuit       | 1 bit        | 01       |     |     | flag              |
| 56    | Resource | EEV_STTS_ON     | 33257        | R   | Enable EEVD valve control                               | 1 bit        | 01       |     |     | flag              |
| 57    | +        | EEV_STTS_ALM    | 33257,1      | R   | EEVD alarm                                              | 1 bit        | 01       |     |     | flag              |

| INDEX | FOLDER         | LABEL                             | PAR.<br>ADDR | R/W | DESCRIPTION                                                                                               | DATA<br>SIZE | RANGE | CPL | EXP | U.M. |
|-------|----------------|-----------------------------------|--------------|-----|-----------------------------------------------------------------------------------------------------------|--------------|-------|-----|-----|------|
| 58    | Resource       | EEV_STTS_DEFR                     | 33257,2      | R   | EEVD defrost                                                                                              | 1 bit        | 01    |     |     | flag |
| 59    | Resource       | EEV_STTS_NOLINK                   | 33257,3      | R   | control status in no-link                                                                                 | 1 bit        | 01    |     |     | flag |
| 60    | Resource       | EEV_STTS_MOD                      | 33257,4      | R   | Select operating mode                                                                                     | 2 bit        | 03    |     |     | num  |
| 61    | Resource       | EEV_STTS_<br>SPECIAL_ON           | 33257,6      | R   | Opening state of fixed valve before EEVD closure                                                          | 1 bit        | 01    |     |     | num  |
| 62    | Resource       | EEV_STTS_FORCE_<br>OPEN           | 33257,7      | R   | Forced complete EEVC valve opening state                                                                  | 1 bit        | 01    |     |     | num  |
| 63    | Net<br>Command | EEV_STTS_ON_SET                   | 33259        | W   | Valve control ON                                                                                          | 1 bit        | 01    |     |     | flag |
| 64    | Net<br>Command | EEV_STTS_ALM_<br>SET              | 33259,1      | W   | Alarm status ON                                                                                           | 1 bit        | 01    |     |     | flag |
| 65    | Net<br>Command | EEV_STTS_DEFR_<br>SET             | 33259,2      | W   | Defrost status ON                                                                                         | 1 bit        | 01    |     |     | flag |
| 66    | Net<br>Command | EEV_STTS_<br>SPECIAL_ON_SET       | 33259,6      | W   | Valve opening command FIX ON                                                                              | 1 bit        | 01    |     |     | flag |
| 67    | Net<br>Command | EEV_STTS_FORCE_<br>OPEN_SET       | 33259,7      | W   | Valve opening command<br>100% ON                                                                          | 1 bit        | 01    |     |     | flag |
| 68    | Net<br>Command | EEV_STTS_MOD_<br>SET              | 33259,4      | W   | Select operating mode control  0: 00 → control 1  1: 01 → control 2  2: 10 → control 3  3: 11 → control 4 | 2 bit        | 03    |     |     | num  |
| 72    | Net<br>Command | EEV_STTS_ON_<br>RESET             | 33259        | W   | Valve control OFF                                                                                         | 1 bit        | 01    |     |     | flag |
| 73    | Net<br>Command | EEV_STTS_ALM_<br>RESET            | 33259,1      | W   | Alarm status OFF                                                                                          | 1 bit        | 01    |     |     | flag |
| 74    | Net<br>Command | EEV_STTS_DEFR_<br>RESET           | 33259,2      | W   | Defrost status OFF                                                                                        | 1 bit        | 01    |     |     | flag |
| 75    | Net<br>Command | EEV_STTS_<br>SPECIAL_ON_<br>RESET | 33259,6      | W   | Valve opening command FIX OFF                                                                             | 1 bit        | 01    |     |     | flag |
| 76    | Net<br>Command | EEV_STTS_FORCE_<br>OPEN_RESET     | 33259,7      | W   | Valve opening command<br>100% OFF                                                                         | 1 bit        | 01    |     |     | flag |

Tab. 45 Client

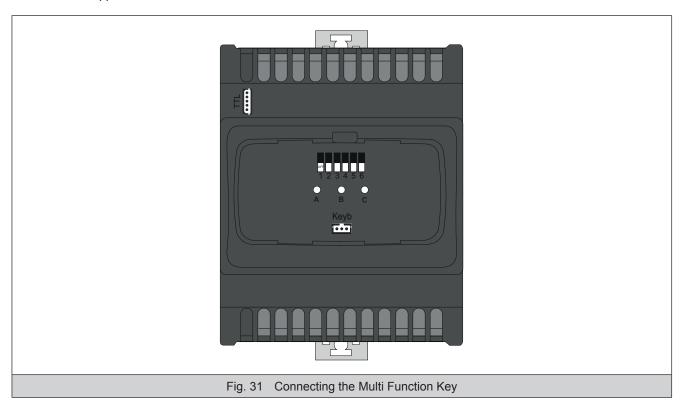
### **11 - ALARMS**

**V910 V3** can run integral diagnostics of the installation, signalling any operating faults with specific alarms, and record and signal any user-defined unusual events on the display in order to have greater control over the installation.

The alarm condition is always reported by the LED near the alarm icon and the enabling of the output on the relay, if appropriately configured.

The probe error is shown directly on the **SKP 10** terminal display. Refer to "11.1 - Alarm table" on page 104.

### 11.1 - Alarm table


| Label | Description/Cause (factory settings)                                                                        | Effect                                                                                                                 | Reset | Solution                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Er01  | Probe error dAi1  • Measured values are outside nominal range  • Control probe un-used/short-circuited/open | <ul> <li>Signal only if the relative<br/>back-up dAi2 probe is<br/>configured.</li> <li>Otherwise see Er06.</li> </ul> | Α     | <ul> <li>Check the probe wiring.</li> <li>Replace probe.</li> <li>When error has been removed, regulation continues as normal.</li> </ul> |
| Er02  | Probe error dAi2<br>Same as Er01.                                                                           | Same as Er01 (probe dAi1).                                                                                             | А     | Same as Er01.                                                                                                                             |
| Er03  | Probe error dAi3 Same as Er01.                                                                              | <ul> <li>Signal only if the relative<br/>back-up dAi4 probe is<br/>configured.</li> <li>Otherwise see Er05.</li> </ul> | А     | Same as Er01.                                                                                                                             |
| Er04  | Probe error dAi4<br>Same as Er01.                                                                           | Same as Er01 (probe dAi3).                                                                                             | Α     | Same as Er01.                                                                                                                             |
| Er05  | <b>Evaporator output probe error.</b> Both Ai3 Ai4 probes are faulty.                                       | % valve opening =dE16.                                                                                                 | Α     | Same as Er01.                                                                                                                             |
| Er06  | Saturation output error. Both Ai1, Ai2 probes cannot be used.                                               | <ul> <li>Case dE50 = 0</li> <li>% valve opening =dE16</li> <li>Case dE50 = 1</li> <li>Valve closed.</li> </ul>         | А     | Same as Er01.                                                                                                                             |
| Er07  | MOP alarm. Saturation temperature > MOP setpoint (dE52) for a longer period than dE53.                      | Valid only if dE50=1. Valve closed.                                                                                    | Α     | Wait for saturation temperature to return < dE52.                                                                                         |
| Er08  | Maximum valve opening % drE7 ≥ dE10 for a longer period than dE13.                                          | Report only.                                                                                                           | Α     | Wait for return of maximum valve opening drE7 < dE10.                                                                                     |
| Er09  | External alarm. Activation of digital input configured as external alarm. See parameters dL40/dL41=±3.      | Valve closed.                                                                                                          | А     | Deactivation of digital input configured as external alarm.                                                                               |
| Er10  | NO link alarm. Unsuccessful serial communication (dF02 = 1, 2)                                              | Valve closed.                                                                                                          | Α     | Restore communication.                                                                                                                    |
| Er11  | Motor protection alarm. Excessive current absorption.                                                       | Valve closed.                                                                                                          | А     | <ul><li>Check motor phases.</li><li>Check motor connection.</li></ul>                                                                     |
| Er12  | Motor protection alarm. Winder 1 disconnected.                                                              | Valve closed.                                                                                                          | А     | Check winder 1 connection (terminals 6-7). Check correct parameter settings dE01dE09, dE80.                                               |
| Er13  | <b>Motor protection alarm.</b> Winder 1 short circuit.                                                      | Valve closed.                                                                                                          | Α     | Same as Er12.                                                                                                                             |
| Er14  | Motor protection alarm. Winder 2 disconnected.                                                              | Valve closed.                                                                                                          | А     | Check winder 2 connection<br>(terminals 4-5).     Check correct parameter<br>settings dE01dE09, dE80.                                     |
| Er15  | <b>Motor protection alarm.</b> Winder 2 short circuit.                                                      | Valve closed.                                                                                                          | Α     | Same as Er14.                                                                                                                             |

Tab. 46 Alarms

### **12 - MFK 100 (FnC FOLDER)**

### 12.1 - Introduction

The **MFK 100 / UNICARD** (MFK) is an accessory that when connected to the TTL serial port, allows rapid programming of the controller parameters (up/download parameter map to or from one or more controllers of the same type) rapidly and/or the controller's application software.



To connect the MFK / UNICARD to the TTL serial port, use the yellow cable supplied.

The upload (label  $\mathbf{UL}$ ), download (label  $\mathbf{dL}$ ) and copy card formatting (label  $\mathbf{Fr}$ ) operations are performed as explained below:

**UPLOAD:** copy from INSTRUMENT to **MFK 100 / UNICARD** (MFK)

By doing this, the programming parameters and/or application will be uploaded to the MFK.

**DOWNLOAD:** copy from MFK 100 / UNICARD (MFK) to INSTRUMENT

With this operation the programming parameters are downloaded from MFK in the instrument.

**FORMAT\*:** The formatting of the **MFK 100** consists of deleting its content.

\*This should be done prior to Uploading when used for the first time.

There are two ways of using the MFK 100

- Using the DIP switches (only Upload/Download)
- Via the SKP 10 terminal

# 12.2 - Upload/Download via DIP switch

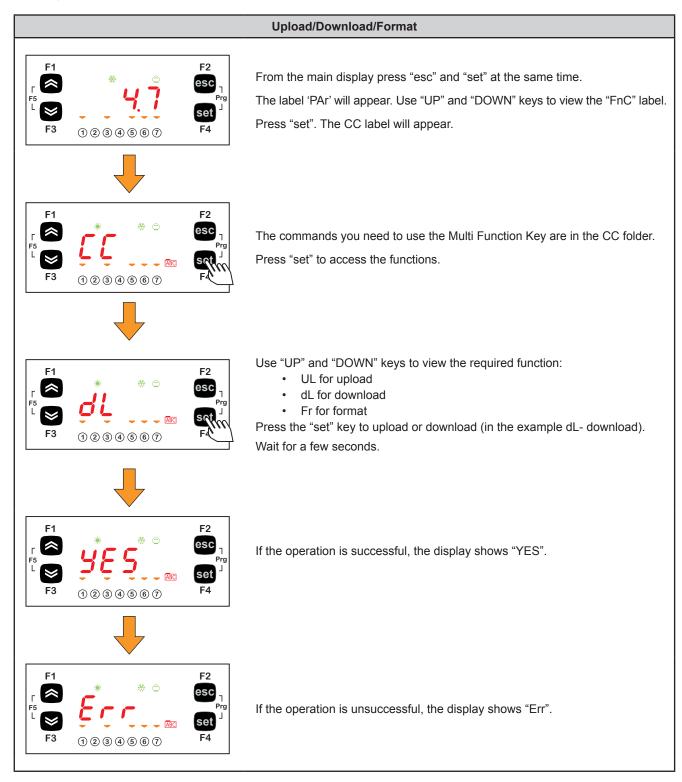
#### Proceed as follows:

- 1. Insert the in the MFK 100 (MFK) in the appropriate connector with the instrument switched on
- 2. place the DIP switches 1 or 2 inside the door to "ON", as described in the following table
- 3. when the operation has been completed, remove the MFK 100 (MFK)
- 4. return the DIP switch to OFF.

|                               |          | Dip1 | 2   | 3 | 4 | 5 | 6 |
|-------------------------------|----------|------|-----|---|---|---|---|
| Upload/Download               | Upload   | ON   | OFF | - | - | - | - |
| parameters from MFK (MFK 100) | Download | OFF  | ON  | - | - | - | - |

Tab. 47 Upload/Download via DIP switch

### 12.2.1 - LED DIP switches


The LEDS A/B/C inside the door indicate the operating state.

|     | Colour | Upload   |                    |                       |  |  |  |
|-----|--------|----------|--------------------|-----------------------|--|--|--|
| LED |        | Underway | Completed properly | Completed incorrectly |  |  |  |
| А   | Green  | Flashing | ON                 | ON                    |  |  |  |
| В   | Yellow | -        | -                  | -                     |  |  |  |
| С   | Green  | -        | -                  | Flashing              |  |  |  |
|     |        | Download |                    |                       |  |  |  |
| LED | Colour | Underway | Completed properly | Completed incorrectly |  |  |  |
| А   | Green  | -        | -                  | -                     |  |  |  |
| В   | Yellow | Flashing | ON                 | ON                    |  |  |  |
| С   | Green  | -        | -                  | Flashing              |  |  |  |

Tab. 48 DIP switch led

### 12.3 - Upload/Download via SKP 10

A step by step illustration of how to proceed is provided below.



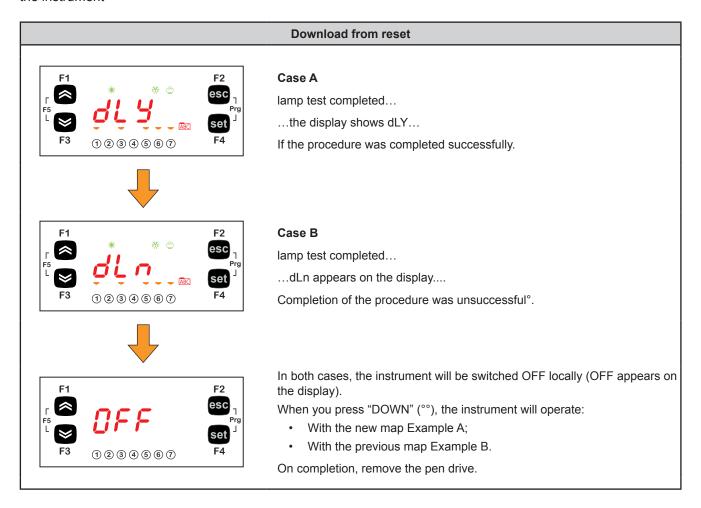
### 12.3.1 - Download from MFK 100

Connect the pen drive with the device switched off.

#### Firmware download

At start up, if a compatible firmware is loaded into the **MFK 100** (MFK), the new firmware is downloaded into the device.

This happens as follows:


- firmware verification/update (LED flashes of the MFK 100)
- termination with successful programming (LED of the MFK 100 on fixed)
- · device switch off.

Note: If a compatible firmware is not loaded into the MFK 100, no download takes place.

If, on termination, the MFK 100 LED not stay on fixed, the operation must be repeated as this means it failed.

#### **Download parameters**

On start up, if there is a compatible parameter map in the **MFK 100**, the programming parameters are loaded into the instrument



- If the **MFK 100** is loaded with both a compatible firmware and a compatible parameter map, the firmware is downloaded first and then (after the device has been switched off and back on again manually) the parameter map.
- The formatting function is ONLY REQUIRED FOR UPLOADING \*\*.
  - in order to use the MFK 100 for the first time (MFK never used)
  - when using the MFK 100 with device versions that are not compatible with each other.
- \*\*Note: a pre-programmed pen drive supplied by Eliwell to DOWNLOAD parameters does not need to be formatted.

#### Formatting **CANNOT** be undone.

- · After the download operation, the instrument will work with the newly loaded parameters map/firmware.
- · Remove the pen drive on completion of the procedure.
- ° If the string Err / dLn (download from reset) appears:
- check that the pen drive is connected to the device
- Check the MFK 100 V910 V3 connection (check the TTL cable)
- check that the key is compatible with the device;
- contact the Eliwell Technical Support.

<sup>°°</sup> Refer to "6 - USER INTERFACE" on page 35.

### 13 - SUPERVISION

The serial TTL - also called COM0 – can be used to configure the instrument, parameters, states, and variables with Modbus via the Modbus protocol.

### 13.1 - Configuration with Modbus RTU

Modbus is a client/server protocol for communication between devices connected in a network.

Modbus devices communicate using a master-slave technique in which only one device (master) can send messages. The other devices in the network (slave) respond, returning the data requested by the master or executing the action contained in the message sent. A slave is a device connected to a network that processes information and sends the results to the master using the Modbus protocol.

The master device can send messages to individual slaves or to the entire network (broadcast) whilst slave devices only respond individually to the master device.

The Modbus standard used by Eliwell Controls employs the RTU code for data transmission.

### 13.2 - Data format (RTU)

The coding model used defines the structure of messages transmitted on the network and the way in which this information is deciphered. The coding type is usually chosen according to specific parameters (baud rate, parity, etc.)\*. Some devices also support only certain coding models. However, this must be the same for all devices connected to a Modbus network.

The protocol used adopts the RTU binary method with bytes configured as follows:

- 8 bit for data, even parity bit (not configurable), 1 stop bit.
- \* Can be set via parameters dF30, dF31.

Parameter setting allows the integral configuration of the device.

The parameters can be modified via:

- SKP 10 terminal
- MFK 100 (MFK)

sending data via Modbus protocol directly to an individual controller or broadcasting it using the address 0.

Refer to (Fig. 32) and (Fig. 33) for the connection diagram for use with Modbus.

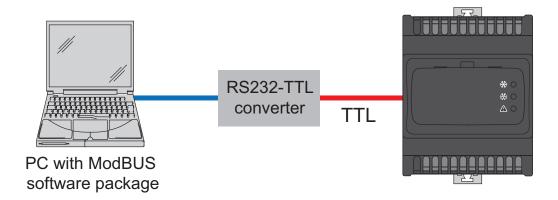



Fig. 32 ModBus connection to individual devices via TTL

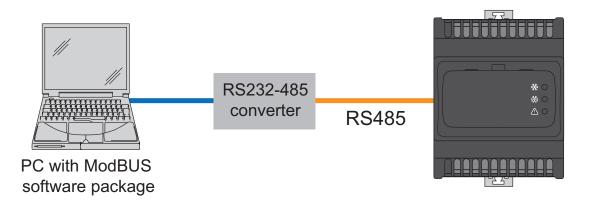



Fig. 33 ModBus connection to multiple devices via RS485

| PC connection / Interface            | RS232 cable                                                          |  |
|--------------------------------------|----------------------------------------------------------------------|--|
| Device / TTL Interfaces connection   | 5-way TTL connector cable (30 cm)<br>(other sizes/lengths available) |  |
| Device / RS485 Interfaces connection | Shielded and twisted RS485 cable (e.g. Belden cable version 8762)    |  |

Tab. 49 Connection for use with modbus

#### Modbus commands available and data areas

| Modbus command | Description of command                  |                 |  |
|----------------|-----------------------------------------|-----------------|--|
| 3              | Read multiple registers on Client side  |                 |  |
| 16             | Write multiple registers on Client side |                 |  |
|                | 0                                       | Manufacturer ID |  |
| 43             | 1                                       | Version ID      |  |
|                | 2                                       | Instrument ID   |  |

Tab. 50 Modbus commands available and data areas

| Maximum length in bytes of messages sent to device           | 60 BYTE |
|--------------------------------------------------------------|---------|
| Maximum length in bytes of messages received from the device | 60 BYTE |

Tab. 51 Length restrictions

### 13.3 - Configuration of device address

The address of a device (Device Number) in a ModBus message is defined in parameter dF30. Refer to "10 - PARAMETERS (PAr)" on page 83.

The address 0 is used for broadcast messages that all slaves recognize. The slaves do not respond to broadcast messages.

# 13.4 - Configuration of parameter addresses

For the list of addresses, refer to "10.2.1 - Parameters / visibility table" on page 86.

### 13.5 - Configuration of variable addresses / states

For the list of addresses, refer to "10.2.6 - Client Table" on page 102.



#### Eliwell Controls s.r.l.

Via dell'Industria, 15 • Z.I. Paludi 32010 Alpago (Belluno) ITALY Telephone +39 0437 986 111 www.eliwell.com

### **Customer's Technical Support**

Telephone +39 0437 986 300 E techsuppeliwell@schneider-electric.com

### Sales office

Telephone +39 0437 986 100 (Italy)
Telephone +39 0437 986 200 (other countries)
E saleseliwell@schneider-electric.com



